
1

T4PC: Training Deep Neural Networks for Property Conformance
Felipe Toledo1, Trey Woodlief1, Sebastian Elbaum1, and Matthew B. Dwyer1

Abstract—The increasing integration of Deep Neural Networks
(DNNs) into safety critical systems, such as Autonomous Vehicles
(AVs), where failures can lead to significant consequences, has
fostered the development of many Verification and Validation
(V&V) techniques. However, these techniques are applied mainly
after the DNN training process is complete. This delayed ap-
plication of V&V techniques means that property violations
found require restarting the expensive training process, and that
V&V techniques struggle in pursuit of checking increasingly
large and sophisticated DNNs. To address this issue, we propose
T4PC, a framework to increase property conformance during
DNN training. Increasing property conformance is achieved
by enriching: 1) the data preparation phase to account for
properties’ pre and postcondition satisfaction, and 2) the training
phase to account for the property satisfaction by incorporating
a new property loss term that is integrated with the main loss.
Our family of controlled experiments targeting a navigation DNN
show that T4PC can effectively train it for conformance to single
and multiple properties, and can also fine-tune for conformance
an existing navigation DNN originally trained for accuracy. Our
case study in simulation applying T4PC to fine-tune two open
source AV systems operating in the CARLA simulator shows
that it can reduce targeted driving violations while retaining its
original driving capabilities.

Index Terms—Deep learning, Autonomous vehicles, Software
and System Safety.

I. INTRODUCTION
Advances in deep machine learning have demonstrated the

ability to synthesize high-quality implementations of deep
neural networks (DNNs). Contrary to traditional software
development, building DNNs is mostly an automated optimiza-
tion process. Conceptually, given a dataset of values x and
corresponding labels y, constructing a deep neural network N
entails an iterative process of computing N (x), comparing it
to y, and adjusting N to minimize their difference.

The increasing integration of DNNs into safety critical
systems such as autonomous vehicles (AVs) [1]–[3] and their
high visibility failures [4]–[7] have prompted the development
of many specialized Verification and Validation (V&V) tech-
niques. To position our contribution among those techniques,
we classify them along two dimensions.

First, when classified based on the type of properties being
analyzed, we find that most V&V techniques for DNNs oper-
ate on metamorphic properties over sensor inputs and output
commands. For example, a property capturing the system’s
robustness to sensor noise may state that “changing a small
number of pixels in a camera image should not affect the
steering angle by more than a given threshold”. Verification
techniques aim to provide guarantees that the DNNs satisfy
such robustness properties, e.g., [8]–[11], while validation
techniques aim to generate diverse inputs that may induce

1University of Virginia, USA {ft8bn, adw8dm, selbaum, matthewbd-
wyer}@virginia.edu

property violations, e.g., [12]–[15]. As V&V techniques have
matured, researchers have begun to target richer system-level
specifications such as “when a vehicle approaches an inter-
section controlled by a stop sign, it shall stop at the marked
line”. This is challenging due to the semantic gap between
the high-dimensional raw sensor inputs, e.g., image pixels,
and the space over which such specifications are defined,
e.g., vehicles and stop signs. Existing V&V techniques either
assume that such higher-level data is available [16] or develop
bespoke abstraction methods to move from the sensor to the
property space [17]. Recent work has developed more general
abstractions of sensor inputs that can be used to judge a
dataset’s completeness [18] or monitor a trained DNN for
property violations [19], and we build on those in this work.

Second, when classified by the stage at which V&V is
applied, we find that the techniques operate after the training
process is completed, acting as quality assurance gatekeepers
for DNNs instead of being an integral part of the develop-
ment [20], [21]. Performing V&V after training means that
detecting that N fails to conform to a desired property occurs
late in the development. This can significantly increase costs
as it requires repair, perhaps through re-training, or worse, the
realization that more and particular data needs to be collected
and labeled. Researchers have explored methods for integrat-
ing property specifications in the training process, e.g., [22]–
[25], but these are either limited to DNNs with small input
spaces or properties that only constrain the DNNs’ output.
Such techniques cannot support properties with preconditions
specified over complex high-dimensional input spaces.

In summary, existing DNN V&V approaches are either too
limited or come too late to meet the challenges of DNNs used
in complex systems like those in the AV domain. We con-
jecture that adapting the training process to incorporate high-
level specifications of desired DNN behavior can overcome
these limitations. To achieve this, an approach must overcome
two key challenges. First, it must be able to optimize not just
based on label matching, but also based on reduction of prop-
erty violations. Second, it must be able to evaluate property
preconditions over high-dimensional raw sensor inputs.

In this work, we define an approach, T4PC, that overcomes
those challenges. Building on recent work in AV property
monitoring [19], T4PC enriches the data preparation process
by abstracting raw sensor inputs captured by an AV using
scene graphs (SGs), structured representations of a scene, to
allow the evaluation of high-level specifications and the gen-
eration of property labels. Then, inspired by work in training
DNNs with logical constraints, e.g., [24], T4PC incorporates
a novel property loss term into training and utilizes a dual
optimization process to balance property loss with traditional
label loss. We implemented T4PC and performed a family
of controlled experiments targeting a navigation system that

predicts steering angle and acceleration, assessing its potential
to increase property conformance. We find that T4PC can train
navigation DNNs that improve property conformance over a
base DNN by 67% for single and multiple properties. Our
case study in simulation on two state-of-the-art AV systems
shows that fine-tuning the system with T4PC reduces the
targeted infractions by up to 38% and improves the overall
driving score. These findings provide evidence that T4PC, and
more generally mechanisms for training DNNs for property
conformance, can offer a cost-effective complement to existing
V&V techniques.

II. BACKGROUND AND RELATED WORK

This section provides a summary of property specifications
for DNNs, scene graphs, relational specifications, and training
approaches for improving DNNs.

A. Properties of DNNs

A dataset, D, is comprised of input, output pairs, (x, y),
where the output defines expected DNN behavior on the
input, y = N(x). The property specification, ϕ(x, y) =
ϕX (x) =⇒ ϕY(y), defines constraints over the inputs and
outputs [26]. The constraint over inputs, ϕX , is termed the
precondition and the constraints over outputs, ϕY , is termed
the postcondition. Properties can be evaluated over a dataset,
∀(x, y) ∈ D : ϕ(x, y), or at DNN evaluation time, given x
evaluate ϕ(x,N(x)).

In settings where primitive propositions can be defined,
previous work has had success at applying a variety of
formalisms, including First Order Logic (FOL) [27] with
spatial and temporal requirements [28], [29], Linear Temporal
Logic (LTL) [30]–[32], and Signal Temporal Logic (STL) [33],
[34], to describe the behavior of critical systems, including
autonomous systems, and their properties [35]. However, such
primitive propositions are only viable over data generated by
simpler sensor types (e.g., gyroscopes, proximity, pressure).

A key remaining challenge in specifying useful properties
lies in the ability to express domain-specific primitive propo-
sitions. In the context of AV systems, as we target here, the
challenge is how to encode and check for the presence of
a vehicle, pedestrian, or stop sign over raw sensor inputs,
e.g., camera or lidar data. While researchers have developed
expressive languages to encode properties over such input
spaces [9], [36], this does not address the core challenge
of expressing such concepts due to the variability of their
presentation in complex sensor inputs (i.e., the different ways
a person may appear in an image, or a vehicle may relate to
a person in a point cloud). In this work, we focus on FOL
properties as they can capture relevant aspects of AV behavior
and represent a first step toward end-to-end property con-
formance. We defer the integration of temporal properties to
future work, as their reliance on input sequences poses further
challenges for training as some AV systems handle temporal
aspects internally rather than through input sequences.

B. Scene Graphs

Researchers have recently proposed the use of scene graphs
(SGs) as an abstraction of multi-dimensional sensor data such
as images and point clouds over which it is practical to express
domain-specific primitive propositions. Scene graph genera-
tion builds a graph that encodes the semantic relationships
between objects in a scene and the relationships between those
objects with their surroundings as, e.g., Figure 1b [37], [38].

A scene graph generator (SGG) maps sensor inputs, I , to
a graph representation, sg : I 7→ G. SGs are directed graphs,
with a vertex set, V , that represents the set of entities captured
by the sensor, and a set of edges, (u, v) ∈ E, describing their
relationships. Formally, G = (V,E : V 7→ V, rel : E 7→
R, att : V ∪ E 7→ A) with functions to access the relation
encoded by an edge, and attribute values of vertices and edges.

More specialized SGGs have emerged for particular do-
mains, such as AVs [39]–[41], that capture semantics that are
more relevant for driving scenes, such as the number of lanes,
types of vehicles, traffic signage, and pedestrians. In the AV
domain, SGs have been studied for dataset evaluation [18],
runtime monitoring [19], and risk assessment [39]. Yet obtain-
ing SGs of sufficient quality remains an ongoing challenge. In
this work we utilize a simulation-based SGG [42] to evaluate
our approach in a controlled setting independent from potential
noise and faults in current research-prototype SGGs. However,
SGGs are an area of research that is advancing rapidly in both
the accuracy of SGs and the flexibility of SGGs in capturing
entities and relationships [43]. As sensor-based SGGs become
more capable, they can be easily integrated into T4PC.

T4PC requires that the SGG utilized be sufficiently ex-
pressive and accurate to capture the primitives needed to
encode the relevant properties against which the DNN will
be evaluated. As studied in prior work on applying SGs
to the AV domain, this includes entities to represent other
road users, e.g., vehicles, pedestrians, and bicycles; entities
to represent traffic semantics, e.g., traffic lights, stop signs,
and junctions; and relations such as parameterized distances
between entities, and which lane a vehicle occupies or a
traffic light controls [18], [19]—such entities and relations
are captured with perfect accuracy by the simulation-based
SGG we utilize in our experiments [42]. An example SG is
shown in Figure 1b. Recent work [44] showed the potential of
visual language models to generate SGs from images as part
of a property runtime monitor. Future work should investigate
how to incorporate more information into the SG, explore the
impacts of inaccuracies or imprecision in the SGs, and the
generality of T4PC with SGs tailored for other domains.

C. Relational Specifications

SGs offer the potential to leverage specification methods
appropriate to graph-structured data, such as relational first
order logic (RFOL). RFOL includes set theoretic, relational,
and logical sub-languages. The set theory support includes
standard operators, e.g., intersection (∩), containment (∈), and
equality (=), and important constants, e.g., the empty set (∅).
The relational support includes operators like relational image
(.) and inverse image (.ˆ). The logical sub-language includes

2

D

P

Abstract Eval D∗

∈

(x, y, ϕX (x), ϕY(y))

|D∗
ϕi
X
|

|D∗| ≥ δ Consistent D∗

AugmentD′

x α(x)

y

x′
y′

P = [(ϕ1
X , ϕ1

Y), . . . , (ϕ
n
X , ϕn

Y)]

T

F

T

F

Refine

Property Label
Generation

D∗

N(θ)

Property Loss

Main Masked Loss

Lagrangian Dual
Optimization Backpropagation N∗N(θ) N(θ)(x)

[Lϕ1 , . . . ,Lϕn]

Lm

L∗

θ′

ϕX (x)

x

y

ϕX (x), ϕY(y)

ϕY

Training for Specification
Conformance

(a) T4PC: phase 1 (blue) generates property labels for dataset D, and phase 2 (green) uses these
labels to train a model N to conform to properties P outputting N∗, a model with improved
property conformance.

ego

lane1 Tlight

car1 red

lane2

car2

on

controlled

coloronon
oppose

oppose

infrontinfront

d4d7to10

(b) An image (top) and a portion of
its scene graph (bottom).

Fig. 1: Overview of T4PC (left) and sample camera input from ego vehicle and a portion of its scene graph abstraction (right).

the usual logical connectives. Recent work on monitoring
safety driving properties [19] introduced a domain specific
language called “Scene Graph Language (SGL)” that contains
low-level SG querying functions to facilitate the specification
and checking of properties. SGL is sufficient to express all of
the RFOL operators described earlier, allowing RFOL to be
compiled for efficient evaluation over SGs. For example, ϕ2

in Table I, which states “If the ego lane traffic light is red or
yellow, then ego should stop,” has its precondition evaluated
as true in Figure 1b, since ego is on a lane with a red light.

D. Runtime Enforcement & Informed Machine Learning

Purely data-driven approaches to learning may exhibit poor
performance when there is insufficient data to train a gener-
alized DNN, or when the trained DNN must meet constraints
dictated by natural laws, regulations, or guidelines [45]. Run-
time enforcement techniques complement learning approaches
by monitoring and correcting system behaviors at runtime
to ensure compliance with specified properties. For exam-
ple, REDriver [46] can enforce AV properties based on the
perception output of the system. While runtime enforcement
acts after a system has made a decision, informed machine
learning seeks to integrate prior knowledge directly into the
training process [47], enabling the system to internalize such
constraints. Different sources of knowledge can be repre-
sented in different ways like: algebraic equations, logic rules,
or knowledge graphs. Moreover, this field has developed
multiple strategies to integrate these representations into the
machine learning pipeline by, for example, adding training
data, modifying the network architecture, adding regularization
terms, shaping a reward function, or altering the optimiza-
tion. Among these strategies are techniques for modifying
reinforcement learning algorithms rewards to satisfy temporal

properties [48]–[50], enriching the loss term used in training
to integrate algebraic equations [51]–[53], and logical formu-
las [22]–[25]. A key difference between these approaches and
ours — and the novelty of our approach — is that T4PC
uses sensor input abstractions (SGs) for evaluating safe driving
property preconditions, to selectively integrate loss functions
capturing postcondition violations on DNN outputs, enabling
the enforcement of system-level properties during training, as
we explain in the next section.

III. APPROACH

To improve the property conformance of learned compo-
nents, we address two key challenges. First, we develop a
novel approach to evaluate property preconditions over high
dimensional sensor inputs. Second, we develop a method
for incorporating loss terms to minimize property violations
while maximizing DNN accuracy. In addressing these chal-
lenges, we also propose solutions to address the issues of
data sufficiency—that there is enough data for each specified
property—and property consistency—that the set of properties
do not conflict. These methods are integrated into the Training
for Property Conformance (T4PC) approach.

A. Overview

Figure 1a depicts the two phases of T4PC. The property
label generation phase (blue) takes a dataset, (x, y) ∈ D, and
set of correctness properties, P , and enhances the dataset, D∗,
prior to training. The training for specification conformance
phase (green) uses the enhanced dataset and properties to train
a given DNN architecture, N , and an optional set of pre-
trained weights, θ, to produce an enhanced DNN, N∗, that
better conforms to the properties.

3

TABLE I: Properties with preconditions (ϕX) in RFOL over SGs and postconditions (ϕY) as DNN output constraints.

Prop (Rule) English description ϕX ϕY
ϕ1 (46.2-816) If ego has an entity within 10m in front and in the same

lane, then ego should stop.
ego.dist(≤, 10) ∩ ego.on.ˆ on ∩ ego.infront ̸= ∅ N(x).acc ≤ −0.25

ϕ2 (46.2-833) If ego lane traffic light is red/yellow, then ego should stop. ego.controlled.Tlight.color ∈ {red, yellow} N(x).acc ≤ −0.25
ϕ3 (46.2-888) If ego has no entity within 25m in front and in the same

lane, there is no red or yellow traffic light, and there is
no stop sign, then ego should accelerate.

ego.controlled.stopsign = ∅ ∧
ego.controlled.Tlight.color ̸∈ {red, yellow} ∧
ego.dist(≤, 25) ∩ ego.on.ˆ on ∩ ego.infront = ∅

N(x).acc ≥ 0.25

ϕ4 (46.2-833) If there is a green traffic light and nothing in front of ego
in the same lane within 10m, then ego should accelerate.

ego.controlled.Tlight.color = green ∧
ego.dist(≤, 10) ∩ ego.on.ˆ on ∩ ego.infront = ∅

N(x).acc ≥ 0.25

ϕ5 (46.2-802) If ego is in the rightmost lane and not in a junction, then
ego should not steer to the right.

ego.on.right = ∅ ∧ ego.junction = ∅ N(x).steer < 0.07

ϕ6 (46.2-804) If ego is in the leftmost lane and not in a junction, then
ego should not steer to the left.

ego.on.left = ∅ ∧ ego.junction = ∅ N(x).steer > −0.07

ϕ7 (46.2-821) If ego is moving and there is a stop sign affecting it within
10m, then ego should stop.

ego.speed ≥ 0.1 ∧
ego.dist(≤, 10) ∩ ego.controlled.stopsign ̸= ∅

N(x).acc ≤ −1.00

ϕ8 (46.2-821) If ego is stopped and there is a stop sign affecting it within
10m and there is nothing in front in the same lane within
7m, then ego should accelerate.

ego.speed < 0.1 ∧
ego.dist(≤, 10)∩ego.controlled.stopsign ̸= ∅ ∧
ego.dist(≤, 7) ∩ ego.on.ˆ on ∩ ego.infront = ∅

N(x).acc ≥ 0.75

Phase one (blue) accepts a dataset of labeled training
instances, (x, y), and a set of property specifications, ϕi

X =⇒
ϕi
Y ∈ P , where the precondition, ϕX , is specified in relational

first-order logic (RFOL) defined over an abstraction of the
raw sensor input, and the postcondition, ϕY , is defined as a
conjunction of interval constraints in the DNN’s output space.

To evaluate properties over high dimensional sensor data,
each input, x, is abstracted, α(x), and fed to a property
evaluation component along with the associated label, y, and
the properties, P . For an input, x, the pre and postconditions
for all properties are evaluated to produce Boolean vectors
indexed by property index, ϕX (x) = [ϕi

X (α(x)) : i ∈ [1, n]]
and ϕY(x) = [ϕi

Y(x) : i ∈ [1, n]]. The ith property is
active for an input if its precondition is true, ϕX (x)[i], and
it holds for an input if ϕX (x)[i] =⇒ ϕY(y)[i]. The output
of the evaluation component is an enhanced dataset, D∗, that
includes the evaluation results for pre and postconditions along
with the original training instance.

To address the data sufficiency challenge, T4PC checks
whether the ratio between the number of inputs meeting the
precondition for each property and the total number of samples
is above a parameterized threshold. If not, then there is insuffi-
cient data for some precondition and the dataset is augmented
to generate additional training instances, (x′, y′) ∈ D′, which
are then abstracted, evaluated, and added to D∗.

If sufficient data is available for all properties, then T4PC
checks that the properties are consistent relative to the dataset.
This means that if an input satisfies the preconditions of two
properties, then it must be possible to satisfy both of their post-
conditions. Resolving inconsistency among properties requires
that the developer refine the specifications. The enhanced,
augmented, and sufficient dataset, D∗, for a set of consistent
properties, P , is then used as input for the second phase.

Phase two (green) takes the dataset, D∗, the properties, P ,
and a deep neural network, N , as input. To accommodate the
application of T4PC to pre-trained networks, the set of network
parameters, θ, can be provided as input as well. When θ is
understood from the context we write N(θ) as N .

T4PC splits training for a data item, (x, y, ϕX (x), ϕY(y)) ∈
D∗, into the calculation of two loss terms. The main masked
loss term which typically consists of computing Lm =

∥N(x) − y∥, but in T4PC also incorporates a check of
ϕX (x) =⇒ ϕY(y) to mask the loss of any property
violations present in the training data. The property loss term
computes, for each property i, the distance from the DNN
prediction to the nearest point satisfying the postcondition,
Lϕi = ∥N(x)− ϕi

Y∥.
To appropriately blend the n + 1 loss terms, T4PC uses

the framework of Lagrangian dual optimization. In this
process, the property losses, [Lϕ1 , . . . ,Lϕn], are combined
with the main loss, L, to produce a single loss, L∗, that
aims to balance the performance of the DNN—matching
training labels—and conformance with specifications. This
loss term is used to update the DNN parameters, θ′, through
backpropagation. Training iterations continue for a specified
number of epochs at which point the final DNN, N∗, is
produced. By considering the abstracted sensor inputs during
training time, T4PC produces N∗, with the aim of achieving
the original training goal and also higher levels of property
conformance. A more detailed description of T4PC follows.

B. Property Label Generation

The objective of this phase is to make a given dataset
amenable for training a DNN for property conformance.

1) Abstract Inputs: To enable the evaluation of precondi-
tions over inputs with high-dimensional sensor inputs such
as image data, T4PC uses scene graphs as an abstraction of
sensor inputs, α = sg. Prior work [18], [19] has shown one can
define a scene graph abstraction based on a set of properties.
This involves identifying the kinds of entities and relations
mentioned across a set of properties and using those to define
the vertex and edge sets of the SG.

For example, given the set of preconditions, ϕX , for the
properties shown in Table I, extracted from the Virginia
Driving Code [54], the set of relations in an SG must include:
dist(op, d), relations indexed by relational operator, op, and
distance, d; and on, infront , light, color, speed, stopsign,
right, junction, and left . We note that color and speed
define attributes—a special class of relations whose image is
a singleton set. Generating such SG permits the evaluation of
preconditions over α(x) using methods from [19].

4

Figure 1b depicts an image and its associated scene graph
which satisfies the preconditions of ϕ1 and ϕ2. In this SG,
the family of distance relations includes: d4 meaning that the
distance is less than or equal to 4m, and d7to10 meaning the
distance is between 7m and 10m, both of these are included
in the relations defined by dist(≤, 10).

2) Evaluate Properties: Evaluating ϕX involves compiling
the precondition to a traversal of the SG; e.g., for ϕ1

X on
the SG from Figure 1b, this determines that the set of
vehicles that occupy the lane of the ego vehicle, specified as
ego.on.ˆ on, includes a vehicle, car1, that lies in the image of
relation dist(≤, 10) relative to ego. For ϕ2

X , the SG traversal
determines that the color of the light governing the ego vehicle
lane, ego.controlled.Tlight.color, is red, so this precondition
is also satisfied. The Boolean evaluations of all preconditions
on α(x) are stored, ϕX (x), for use in subsequent processing.

Postconditions, ϕY , are formulated over DNN outputs,
N(x), which for a training instance is the label, y. In this
work, postconditions are conjunctions of axis-aligned linear
constraints which define hyper-rectangular constraints in the
DNN output space. Given a training instance, (x, y), we can
evaluate the postcondition ϕY(y) by directly evaluating the
linear constraints. For example, both ϕ1 and ϕ2 have the
same postcondition, N(x).acc ≤ −0.25, which requires the
acceleration output of the DNN to indicate deceleration. The
Boolean outcomes of evaluating all postconditions on labels,
y, are stored, ϕY(y), for use in subsequent processing.

We store pre and postconditions separately, since this allows
us to efficiently determine whether a training instance satisfies
a precondition, ϕX (x), and property, ϕX (x) =⇒ ϕY(y).

3) Data augmentation: This module addresses the need for
data sufficiency relative to property preconditions. A dataset
must have enough training samples that satisfy each property
precondition, ϕi

X , in order for DNN training to be able to learn
to conform to the property. Let

D∗
ϕi
X
= {x : x ∈ D∗ ∧ ϕX (x)[i]}

be the input samples that satisfy ϕi’s precondition. A dataset
is insufficient for a property, ϕi, if the ratio of training inputs

that satisfy its precondition is below a threshold,
|D∗

ϕi
X
|

|D∗| < δ.
If this inequality holds, then we must generate at least ti =⌈

δ|D∗|−|D∗
ϕi
X
|

1−δ

⌉
new inputs for D∗ through augmentation that

satisfy the precondition; this is the least integer value added to
the numerator and denominator of the left side of the threshold
inequality that guarantees it will be false.

To minimize the impact of augmentation on the data
distribution, we wish to transform elements of the dataset
that are the closest to satisfying ϕi

X . Since preconditions are
formulated over α, we define “distance to satisfaction” as:

∥x− ϕi
X ∥ = min

x′∈D∗
ϕi
X

∥α(x)− α(x′)∥

as the minimum distance from x to a training input x′ that
satisfies the precondition. This provides a pool of transforma-
tion candidates, C = {(x, d) : x ∈ D∗ ∧ d = ∥x− ϕi

X ∥}. We
then select ti values to augment, D′ ⊆ C, where |D′| = ti,
and ∀(x′, d′) ∈ D′ : ∀(x, d) ∈ C − D′ : d′ ≤ d. As we

discuss next, it may be possible to augment the same data
point multiple ways; if so, |D′| ≤ ti.

We augment the dataset using metamorphic transformations.
A metamorphic transformation consists of a pair of functions
f : X → X and g : Y → Y that modify the input and output,
respectively, while preserving a consistency relationship such
that for any correct implementation, h : X → Y , the
transformation ensures that ∀x, y : g(y) = h(f(x)). Such f
and g must be carefully crafted by the developer with respect
to the requirements to ensure this validity holds.

To illustrate, consider a driving dataset where inputs, x =
(i, s), consist of an image, i, and the speed, s, of ego
vehicle, with outputs, y, defining acceleration. A property
might specify that: “if there is a car stopping in front of the
ego vehicle and ego vehicle speed is greater than 5 km/h, then
ego vehicle should stop”. An input x containing an image
that shows a car with its brake lights illuminated in front
of the ego vehicle and a speed of 2 km/h, does not satisfy
the precondition of the property because the speed is less
than 5 km/h. This input could be augmented using function
f(x) = (i, rand(minSpeed,maxSpeed)) that (potentially
repeatedly) chooses a speed within the speed range, and
g(y) = y to preserve the output. If a data point had a speed of
10km/h, but the image lacked the car in front of ego, a function
f(x) = (addCarFrontEgo(i), s) could be used [55].

4) Check Consistency: T4PC is designed to train for con-
formance with a set of properties. It is possible, however, that
two properties are inconsistent. For example, if we modified
the precondition of ϕ1 to use an equality rather than the dise-
quality, then this precondition would subsume the precondition
of ϕ4, which additionally constrains the color of the light
governing the ego vehicle lane. Having such properties would
be problematic because ¬∃y : ϕ1

Y(y) ∧ ϕ4
Y(y), which means

that it would be impossible to satisfy both of these properties.
T4PC requires that the set of properties, P , be defined so as
to avoid such situations.

Given a universe of scene graphs, U , one can determine
whether the preconditions of two properties, ϕ and ϕ′, overlap
by evaluating ∃u ∈ U : ϕX (u) ∧ ϕ

′

X (u). Given a distribution,
D, of sensor inputs, if U were guaranteed to subsume all scene
graphs that could occur, ∀x ∼ D : α(x) ∈ U , then it would
be sound to use such an approach. Determining such a U is
challenging, moreover existing approaches to reasoning about
RFOL do not scale to graphs of the size that we have observed
in realistic driving scenes [56].

We approximate the above check by computing the co-
satisfaction of precondition pairs evaluated over the dataset:

O = {(i, j) : 1 ≤ i < j ≤ n∧x ∈ D∗ ∧ϕX (x)[i]∧ϕX (x)[j]}

A set of properties is consistent if ∀(i, j) ∈ O : ϕi
Y ∧ ϕj

Y .
For a general class of postconditions, including the hyper-
rectangular constraints used in this work but generalizing well-
beyond that, we can encode the check for consistency as an
SMT problem in the theory of linear real arithmetic. Since
there are at most n2

2 pairs of matching preconditions and
postconditions are not overly complex, this is a very efficient
check; for the properties in Table I the total time for all checks

5

is less than 0.01 seconds. Inconsistent pairs of properties are
reported to the user who must refine them and restart T4PC.

We note that the lack of soundness of dataset consistency
is not a problem for T4PC. This is because the training
process, described below, only assumes dataset consistency in
computing property loss.

C. Training for Specification Conformance

The purpose of this step is to use our enhanced dataset D∗ to
train a DNN for specification comformance by incorporating
the defined properties into the optimization.

1) Main Masked Loss: When a training instance, (x, y),
violates a specification, ∃i : ¬(ϕX (x)[i] =⇒ ϕY(y)[i]),
there are several possible solution strategies. For example, one
could provide this feedback to the DNN developer and ask
them to refine the training instance, similar to our approach
for property inconsistency, but this could be expensive for
developers. We adopt a more permissive approach that allows
for violating training data, but masks the main loss term—
since it may bias training away from property conformance—
and effectively uses the input, x, to perform a kind of weak-
supervision based on property loss.

Given a deep neural network prediction N(x), a data label
y, and property labels ϕX (x), ϕY(y), the main masked loss L
is defined:

Lm(N(x), y) =

{
0 if ∃i : ϕX (x)[i] ∧ ¬ϕY(y)[i]

l(N(x), y) otherwise

where l is a traditional loss function, such as, MSE, MAE, or
cross-entropy. If any property is violated by the training pair,
(x, y), then we say that the main loss is masked.

For example, consider a property “if there is a red light
governing the ego lane, the ego vehicle should stop”, and a
data point for which the input image contains a red light, but
its label says that ego should accelerate instead of stop. In
this case, the framework will mask the main loss for that data
point since the ground truth label for that input is wrong with
respect to the property. This step is important because we do
not want the DNN to learn behavior that does not conform to
the specified properties.

2) Property Loss: When properties are violated, T4PC
biases training towards their satisfaction. It takes in the DNN
predictions, N(x), the precondition labels ϕi

X (x) and the
postcondition labels ϕi

Y(y) for each property, and computes
a loss for each property, Lϕi . In this section, we define
property loss for a general class of postconditions containing
multiple output variables expressed as hyper-rectangular (HR)
constraints in the output space of a DNN. This class is
sufficient for expressing a range of properties from the recent
literature [18], [19], but we note that further generalization of
postconditions, e.g., to disjunctions of HR postconditions, and
to polyhedral postconditions, could be valuable. For example,
handling disjunctions would allow for collision avoidance
specifications like: “if ego’s speed is more than 10mph and a
vehicle is 4m in front, and no vehicles are to the left or right,
then the ego steering should be aggressively left or right”.

Such specifications could be supported by an extension of this
framework, but we leave that to future work.

Let N ’s output space be Rm and for y ∈ Rm let y[i] denote
the coordinate value of its ith dimension. A set of m intervals,
I = {[li, ui] : i ∈ [1,m]}, forms the basis for defining an
HR postcondition, ϕy =

∏
[l,u]∈I [l, u]. Let ϕy[i] denote the

interval for the ith dimension, [li, ui]. The distance from a
scalar value, v, to a closed interval is:

∥v − [l, u])∥ =

{
0 if l ≤ v ∧ v ≤ u

min(∥l − v∥, ∥v − u∥) otherwise

Lifting this distance to the vector of DNN outputs and
associated postcondition intervals gives the property loss:

Lϕi(N(x)) =

{
∥N(x)− ϕi

Y∥ if ϕX (x)[i] ∧ ¬ϕY(N(x))[i]

0 otherwise

D. Lagrangian Optimization

ϕ1
Y

ϕ2
Y

N(x)

Lϕ1

Lϕ2

L∩

Fig. 2: Property loss (- -),
combined loss (. .)

As depicted in Figure 2, for
each property that is violated a
separate loss term is computed,
e.g., Lϕ1 and Lϕ2 . These losses
are combined in order to bias
training towards conformance of
all properties. This combined
loss, L∩ in the figure, approxi-
mates the distance to the intersec-
tion of the active postconditions
as depicted in the grey region of
the figure. To blend the main masked loss and property loss
terms without requiring parameter tuning, T4PC leverages
Lagrangian dual optimization [57] to learn the blending hy-
perparameters, λi. Our problem’s loss in this framework is:

L∗(N(x), y) = Lm(N(x), y) +

|P |∑
i=1

λiLϕi(N(x))

The λi are initialized to 0 and updated after every training
epoch by incorporating the property-specific loss:

λk+1
i = λk

i + ρi
∑

(x,...)∈D∗

Lϕi(N(x))

The hyperparameter ρi is the Lagrangian update step which
can be set for each property to control the rate of change
of λi. Property loss weights are initially zero, λ0

i = 0. If
a property, ϕi, is violated then its weight, λi, is updated in
proportion to the cumulative loss within current training epoch
moderated by ρi. This allows the optimization process to adapt
during training to determine how to weight property loss—to
achieve property conformance—while avoiding overweighting
it—which might reduce DNN accuracy.

E. Limitations

T4PC enables training a DNN to improve property con-
formance. However, the approach for T4PC is limited in the
expressiveness of the properties that can be leveraged for
training. In order to apply the property loss regime specified

6

in Section III-C2, the property must be specified over a single
input-output pair describing the expected behavior in response
to each input. For example, a property could say “if there
is a green light, acceleration must be positive” as this is
evaluated over a single input (whether there is a green light in
the abstract input representation) and a single output (whether
the resultant acceleration is positive). These properties are
described formally in RFOL. This allows T4PC to assign the
attendant property loss to each input to guide the training
through backpropagation. However, autonomous vehicles are
bound by richer temporal properties that span multiple inputs
and outputs; for example, “the vehicle must stop at the stop
sign before continuing”. This property does not describe the
expected output of the DNN at any particular time step—
whether the vehicle should accelerate or decelerate depends
on whether the vehicle has already stopped or not. This is
not directly expressible in RFOL and requires a form of
temporal logic [19]; this paradigm is not amenable to ascribing
a particular loss based on a single input-output pair. Although
Section V-B demonstrates how T4PC can approximate such
properties during training to improve conformance at runtime,
future work should investigate methods to expand T4PC to
directly leverage these richer temporal properties.

F. Implementation

We instantiated and used T4PC for the following controlled
experiments. We briefly describe 3 implementation details.
For the abstraction we used the same scene graphs (SG)
and scene graph generators used in previous work [18], [19]
whose structure is explained in Section III-B2. To evaluate the
properties over the SGs we utilize the scene graph language
(SGL) [19] to formally specify the properties and check them
over scene graphs. Finally, the main masked loss, property loss
and Lagrangian dual optimization were implemented in Python
using PyTorch [58]. For the family of controlled experiments
we designed an end-to-end training pipeline that includes
these losses and optimization, while for the case study in
Section V, we incorporate the losses in two AV systems
training pipeline. We make our implementation available on
https://github.com/less-lab-uva/T4PC [Archive].

IV. CONTROLLED EXPERIMENT

To study T4PC’s ability to increase property conformance
of a DNN we set the following research questions:

RQ1. How effective is T4PC at training a DNN from scratch to
conform to varying numbers of properties? We explore T4PC’s
performance when applied to train a series of models towards
the conformance of property sets of different sizes.

RQ2. How efficient is T4PC in training a DNN to conform to
multiple properties? We explore how the number of properties
targeted affects the training time, as well as the trade-offs
between training time and performance gains when training
for different periods.

RQ3. How effective is T4PC at fine-tuning a DNN to conform
to single properties?

We defer studying the treatment combination of fine-tuning
for multiple properties to the case study in Section V.

To answer these research questions, we first introduce the
dataset used for training and evaluation, followed by the
navigation DNN used in our experiment. Second, we present
a detailed description of the properties studied and describe
our experimental design for both training from scratch and
fine-tuning. Finally, we outline the metrics employed to assess
T4PC’s effectiveness in achieving property conformance.

A. Dataset

To ensure high-quality data collection, we utilized TCP [59],
an end-to-end AV system (that we later study as a whole
in Section V), currently ranked number 3 in the CARLA
leaderboard challenge [60], which evaluates the driving pro-
ficiency of autonomous agents in realistic traffic scenarios.
We collected a dataset of 400,487 frames each containing an
image, steering angle, acceleration, and scene graph using the
CARLA [61] simulator. Following the procedure defined by
the TCP system, we collect data from 6 CARLA environments,
also known as “Towns”, that cover a range of driving land-
scapes, from urban to rural, including single and multi-lane
roads, and various weather and lighting conditions. For each
town, the TCP procedure executes many routes, where each
route contains a series of waypoints that the ego vehicle must
follow until reaching the destination. Depending on the town,
between 321 and 480 routes are collected. The entire dataset,
over 137 GB, is available to download in our repository.

During the data collection phase, we use a plugin [42] that
interfaces with the CARLA Python API to generate ground-
truth scene graphs (our abstraction α)1, adopting the SG
parameterization used in prior work [18], [19]. We use ground-
truth SGs to enable analysis of T4PC independent of noise or
faults in scene graph generators over sensor data; however,
the current pace of research in scene graph generation [62] is
encouraging for the future application of T4PC in practice.

B. AV Navigation DNN

We focus on a DNN that can be used by an AV to navigate
in an environment. To facilitate experimentation, we trained
our own DNN so we could manipulate the properties that we
optimize for and use different data. Note that the next section
complements this controlled setup by applying T4PC to two
real systems in a simulated environment. The AV will capture
images through its front camera and feed them to the DNN;
the DNN will output a steering angle and acceleration signal
that the AV will use to move around. Both DNN outputs are
normalized to the range [−1, 1]. For acceleration, a value of
-1 is the strongest signal for braking, while a value of 1 is
the strongest signal for accelerating. For steering angle, these
values represent a range between -70 and 70 degrees. Similar
to prior work using SG for AVs [18], we leverage a pre-trained
ResNet34 backbone since it is used by the top 3 ADS [59],
[63], [64] in CARLA leaderboard, though with a modified
output layer to predict acceleration and steering angle.

1Data from 2 out of 8 towns were not collected due to incompatibilities
between the CARLA versions used by TCP and by our instrumentation plugin.

7

https://github.com/less-lab-uva/T4PC
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/less-lab-uva/T4PC

C. Properties

We define six safe driving properties for this experiment.
Their English description and logic formula for their pre and
postconditions are shown in the first part of Table I (ϕ1–ϕ6).
We do not include ϕ7 and ϕ8 as their preconditions require
the ego vehicle speed, and the AV navigation DNN used in
this experiment does not take that as input (we consider them
in Section V). The first 4 properties state a postcondition in
terms of the model’s acceleration output, while the following 2
properties state a postcondition in terms of the model’s steering
angle output. Among the 4 acceleration properties, ϕ1 and ϕ2

expect a negative acceleration as they enforce a stop action,
while ϕ3 and ϕ4 expect a positive acceleration.

D. Experimental Design

We perform three distinct experiments to answer each
research question. For each question we train two types of
DNNs: base DNNs (B) that only include the main loss function
computed from the data labels, and treatment DNNs (M)
using T4PC that also account for property conformance. Since
we do not explore augmentation in this experiment, we have
no metamorphic functions to be defined. All the DNNs, B and
M, throughout the three research questions are based on the
architecture described in Section IV-B, trained for 15 epochs2,
using batches of 256 images, with the same dataset. We use
a Stochastic Gradient Descent (SGD) optimizer, a constant
learning rate (lr) of 10−4, and a ρ for the property losses of
0.1. For training every DNN, we used 8 CPU cores, 128G of
RAM, and 1 A100 GPU.

To account for the variation across towns and routes, we
implemented leave-one-out cross-validation, leading to 6 splits
with 5 towns used for training and validation, and 1 town
used for testing3. We train and evaluate a DNN for each split,
leading to 6 DNNs per type. The metrics are reported on the
aggregate of the test results obtained from each split.

E. Metrics

We define 2 types of metrics: violation improvement, and
loss improvement, using percentages4. These metrics represent
the difference between the property violations (Vimp), the
steering angle (Ls

imp), and acceleration (La
imp) loss of the

baseline, B, and the DNN that uses property loss, M. For
each of the metrics, a higher score indicates an improvement
of performance, with a value of 100.00% meaning that M
has removed all violations present in B. Higher values of
Vimp indicate that T4PC is effective at improving property
conformance. Note that while higher values of Ltype

imp are
better, a 0.00% would indicate that T4PC did not decrease the
performance of the baseline DNN with respect to the original
loss. Formally:

Vimp =

∑|Splits|
i=0 v(Bi)−

∑|Splits|
i=0 v(M i)∑|Splits|

i=0 v(Bi)
× 100

2We show why 15 epochs is adequate as part of Section IV-G1.
3The number of samples in each split/town can be found in the appendix.
4Violations per property and split are available in the appendix.

Ltype
imp =

∑|Splits|
i=0 Ltype(B

i)−
∑|Splits|

i=0 Ltype(M
i)∑|Splits|

i=0 Ltype(Bi)
× 100

Where v is a function to obtain the number of violations
for a given DNN. To aggregate the results from the 6 split
cross-validation, we sum the number of violations/loss across
the splits. These sums are used for computing Vimp , Ls

imp ,
and La

imp respectively.

F. RQ1-Training towards property conformance

1) Setup specific to experiment: We train 6 baseline B
DNNs (one per split). We also train with T4PC for each of the
6 splits using varying combinations of the first 6 properties in
Table I. This results in varying numbers of M DNNs, based
on combinations of the 6 properties. Specifically, choosing 1,
2, 4, or all 6 properties yields

(
6
1

)
= 6,

(
6
2

)
= 15,

(
6
4

)
= 15,

and
(
6
6

)
= 1 combinations, respectively. Each combination is

evaluated across 6 data splits, resulting in a total of 36, 90,
90, and 6 M DNNs, respectively.

2) Results: The first four subfigures of Figure 3 show the
results for the treatments (instances of 1 prop, 2 props5, 4
props5, and 6 props6). The x-axis measures the main loss
improvement for steering () and acceleration (×). The y-axis
measures the violation improvement where 0.00% means that
B and M cause the same number of violations, and a value of
100.00% means that, different from B, M does not violate the
property. Negative values in either axis means that DNN M
has either a higher loss or more violations than its counterpart
B. Ideally, M will result in observations at the top (violation
improvement > 0) and center-right (loss improvement ≥ 0)
of each figure—reducing violations but retaining the original
performance of B. To ease the reading of Figure 3, we used
dashed lines to represent acceleration properties and solid lines
to represent steering angle properties, and we included the total
number of violations from B and M respectively.

We first focus on training for one property. Starting from
the top of the graph in Figure 3 (1 prop), when T4PC is
applied to conform to ϕ5, M achieves a 100.00% violation
reduction over B (from 5,912 violations to 0), meaning that it
was able to learn not to violate the property unlike the base
DNN. Applying T4PC to the first four properties (acceleration
properties), shows a range of gains from 79.66% to 34.10%,
depending in part on the DNN’s capability to identify the
property precondition features. For example, features such
as detecting traffic light by color (ϕ2, ϕ3, ϕ4) are readily
identified by models like Detectron2 [65]. In contrast, distance
features like entities within X meters (ϕ1 and ϕ3), are hard
to estimate by using a monocular camera [66]. The low
improvement for ϕ3 may be due to the DNN’s difficulty in
recognizing whether a car is within 25m in the same lane as
ego. More than 83% of the violations occur in the 6th split
where Town 10 is used for testing. This town contains parked
cars that can confuse the DNN, causing it to fail to satisfy the

5 Since the 2 props and 4 props sets contain 5 and 10 more property
combinations than 1 prop, we scale up the number of B violations (number
to the left of the colored arrows) to serve as a baseline.

6Since we train a single DNN to satisfy the 6 properties simultaneously,
the main loss differences (dots and crosses) are the same for all properties.

8

15 10 5 0 5 10 15
Loss improvement (%)

0

20

40

60

80

100

Vi
ol

at
io

n
im

pr
ov

em
en

t (
%

)

522 192

588 190

0 0

5912 0

2293 1511

4198 854

1 prop

15 10 5 0 5 10 15
Loss improvement (%)

0

20

40

60

80

100

2610 1257

2940 1342

0 0

29560 0

11465 8026

20990 4251

2 props

15 10 5 0 5 10 15
Loss improvement (%)

0

20

40

60

80

100

5220 3110

5880 3847

0 0

59120 0

22930 18586

41980 9881

4 props

15 10 5 0 5 10 15
Loss improvement (%)

0

20

40

60

80

100

522 423

588 471

0 0

5912 0

2293 1781

4198 1118

6 props

25 20 15 10 5 0 5 10 15 20 25
Loss improvement (%)

0

20

40

60

80

100

518 187
570 182

0 0

5923 93

2285 1485

4243 995

Ft 1 prop

1 - StopToAvoidCollision
2 - StopForYellowRed

3 - NoStopForNoReason
4 - AccelerateForGreen

5 - NoSteerRightOutRoad
6 - NoSteerLeftOutRoad

Steering loss diff
Acceleration loss diff

Fig. 3: Experiment results when training from scratch with 1, 2, 4, and 6 properties, and fine-tuning with 1 property.

property thus decreasing conformance. At the bottom of the
graph we note that T4PC was not able to provide gains for ϕ6

(0.00%) as B already does not violate the property.
Beyond violation improvements, the mostly central position

of the dots and crosses indicate that the main losses for most
properties do not vary much from the baseline. The average
loss improvement percentage for both losses is -0.27. However,
the reduction in violations for ϕ3 led to more noticeable
negative loss improvements, likely due to the DNN’s inability
to identify preconditions, thus biasing predictions towards
positive accelerations. The experiment in Section V explores
this further by deploying such DNNs in simulation.

The trends observed when improving conformance of single
properties extend mostly to multiple properties. As we increase
the number of properties included in the optimization (2, 4,
and 6 props in Figure 3), we observe that violation reductions
achieved by T4PC for individual properties decrease, while
the main losses improve. This trend can be attributed to the
increased competition among properties: when multiple con-
straints are optimized together, their effects on the network’s
outputs can counterbalance one another. For example, some
properties may encourage acceleration while others promote
deceleration, or may favor steering in opposite directions. This
interplay among property objectives balances the network’s
behavior, leading to improved performance on the main losses.

We also note that the properties that perform the best have
the largest amount of data satisfying their preconditions, have
preconditions with easier-to-detect features, or both. For exam-
ple, ϕ5 and ϕ2—which have around 210k and 120k datapoints
per split satisfying the preconditions, respectively—exhibit
higher violation reductions than other properties. This is
not only due to their broader coverage in the dataset, but
also because their preconditions are simple to identify: ϕ5

involves detecting a curve to the right, which implies being the
rightmost lane, and ϕ2 corresponds to the presence of a yellow
or red traffic light. Although ϕ4 has the fewest datapoints
satisfying its preconditions (23k), it still performs relatively
well, likely because its precondition—detecting a green traffic
light—is easy for the network to recognize. In contrast, ϕ3 has
57k datapoints satisfying its precondition but performs worse,

likely due to the greater difficulty of detecting entities within
25 meters, as discussed earlier in this section. This imbalance
in both coverage and precondition complexity helps explain
which properties benefit most from the optimization.

Despite the competition, we highlight that none of the prop-
erties experiences a negative violation improvement, demon-
strating that even with multiple properties pulling the model in
different directions, the optimization process yields consistent
safety benefits without introducing regressions.

T4PC is able to train DNNs optimizing for multiple
properties at the same time, reducing property viola-
tions and in some cases improving the main losses.

G. RQ2-Training-time efficiency with multiple properties

To evaluate the efficiency of T4PC, we consider two dimen-
sions: (1) the training-time overhead incurred when targeting
an increasing number of properties simultaneously, and (2)
the trade-offs between training time and performance gains as
models are trained for longer periods.

1) Efficiency in Terms of Training Time: We assess how
well T4PC scales by measuring the per-batch training cost
as the number of properties increases. To do so, during the
evaluation of RQ1, we instrumented the training phase to
record the time taken for each batch, including the forward
pass, the calculation of the original loss and, for T4PC, the
property loss, as well as the backpropagation step to update
the DNN weights.

The box plots in blue (left) in Figure 4 show the distribution
of time taken per batch (measured in milliseconds in the left-
axes), while the black dots show the median time taken to
train 15 epochs (measured in minutes in the right-axes), all
across the number of properties targeted during training. For
the baseline models, targeting zero properties, the median
batch time is 232ms. When targeting one property, the me-
dian batch time is 612ms due to the overhead incurred by
T4PC; although substantial in relative terms, the successful
application of T4PC through the other RQs demonstrate its
feasibility. Increasing to 2, 4, and 6 properties incurs only a

9

0.600

0.605

0.610

0.615

0.620

0.625

611.9 612.3
614.7

617.5

Baseline 1 Prop 2 Props 4 Props 6 PropsBaseline 1 Prop 2 Props 4 Props 6 Props
0.225

0.230

0.235

0.240

0.245

0.250

231.5

195

200

205

210

215

220

205.9 206.4 207.2
208.6

70

75

80

85

90

95

78.1

Ba
tc

h
Ti

m
es

 (i
n

m
ilis

ec
on

ds
)

15
 E

po
ch

 Tr
ai

ni
ng

 T
im

es
 (i

n
m

in
ut

es
)

Model Type

Fig. 4: Time to train a batch (blue, left-axes) and median time
to train for 15 epochs (dot, right-axes), across property sets.

minor increase in the median time on the order of a millisecond
per additional property, or less than 1%. Through the black
dots we can see how these values scale when training the
different models for 15 epochs of 1,351 batches each. Neither
the box plots nor the black dots include the I/O time of loading
images and labels which adds approximately 100 minutes with
high variability to both baseline and T4PC. In this context, the
overhead of T4PC is practical and similar to the overhead of
other parts of the training process.

2) Cost-effectiveness of Training Longer: To examine the
cost-effectiveness of training over extended durations, we
trained a model with property loss for 72 hours—the maximum
time allowed per GPU partition on our SLURM server—using
the same hyperparameter and hardware settings described in
Section IV-D. We focused on the most challenging setting:
optimizing the first six properties from Table I, completing
156 epochs within the time limit. To account for variance, we
repeated the experiment three times using the same data split,
resulting in three trained models.

Figure 5 shows the average total number of property vio-
lations computed over the 3 trained models during validation,
with a 2 standard deviation interval shaded in gray. At epoch
0, there are 10,099 violations. By epoch 15, the number of vi-
olations is 742 (a 92.7% reduction), and by epoch 63, it drops
to 364 (a 96.4% reduction)—the minimum average of total
violations across all epochs. This additional 3.7 percentage
point improvement comes at a significant computational cost:
training for 15 epochs takes approximately 5 hours, whereas
63 epochs—required to achieve the additional gain—take 21
hours, representing over 300% more training time.

T4PC scales efficiently to multiple properties, adding
only minimal overhead per batch, and a significant
percentage of the gains are obtained early in training.

H. RQ3-Fine-tuning towards property conformance

1) Setup specific to experiment: To answer this question,
we need to fine-tune existing DNNs. We use the 6 baseline
DNNs (B) from Section IV-F as a starting point, fine-tuning
each for 15 additional epochs on the same data split and

dataset. The fine-tuning process using only the loss function
computed from the data labels results in 6 fine-tuned base-
lines, Bft, while the fine-tuning process using T4PC towards
conformance for 6 properties renders 36 new DNNs, Mft.
For fine-tuning the DNNs we use a smaller lr of 10−5.

2) Results: Figure 3 with “Ft 1 prop” label summarizes the
results. Overall, the violation improvements show a similar
trend as in Section IV-F. All but one property shows clear
violation reductions, with the only property not seeing gains
(ϕ6) having the baseline DNN already achieving 0 violations.
ϕ5 achieves a 98.43% violation improvement, and the other
4 properties show between 35.01% and 76.55% violation
improvement. For the properties involving acceleration, except
for ϕ1, violation improvement comes at the cost of main loss
decreases that are more noticeable than when training the DNN
towards property conformance from scratch (shown in Section
IV-F). For example, the DNN acceleration loss for ϕ4 went
from 2.59% when training from scratch to -15.27% when fine-
tuning towards conformance. We conjecture that the reduction
in main loss arises from the base DNNs trained with data
labels having achieved a local minimum with respect to the
main loss. Thus, fine-tuning those DNNs for conformance to
those properties is likely to have moved them away from that
minimum. In such cases, the engineer will have to analyze
the effect of increases in main loss in light of the decrease
in violations. In Section V we deploy a navigation DNN in
simulation to assess the true impact of such losses.

T4PC is able to fine-tune existing DNNs, reducing
number of violations, albeit with more noticeable
differences in main loss, showing its effectiveness at
reducing violations of existing highly trained DNNs.

I. Threats to Validity of Findings

The validity of our findings across the family of experiments
suffers from 3 key threats.

First, the starting navigation DNN, the collected dataset, and
the properties selected allow us to conduct a family of studies
where we can manipulate the conditions under which T4PC
is applied in order to answer multiple research questions.
However, the external validity of this selection limits the reach
of our findings. The DNN architecture was the same as used
in prior work [18], but more complex architectures and pa-
rameterization may offer different tradeoffs when training for
conformance. The collected dataset also came from CARLA,
following the same procedures and environments employed by
similar systems [59]. Yet, differences in sensors, their fidelity,
and their rates, for example, may impact T4PC. The selection
of properties was inspired by work encoding driving rules [19]
that were relevant to the chosen navigation DNN. Although the
6 properties we use are representative of many others, there
are still many properties that would require a more expressive
abstraction and language to be incorporated into T4PC.

Second, the implementation of T4PC involves many com-
ponents, from the scene graph generator to the Lagrangian
optimization, of considerable complexity and with many con-

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155
Epochs

0

2000

4000

6000

8000

10000

12000
Pr

op
er

ty
 V

io
la

tio
ns

E0: 10,099 E15: 742 E63: 364 1 - StopToAvoidCollision
2 - StopForYellowRed
3 - NoStopForNoReason
4 - AccelerateForGreen
5 - NoSteerRightOutRoad
6 - NoSteerLeftOutRoad

Total Violations

Fig. 5: Average validation property violations with 2 std interval when training for 72 hs.

figurable parameters. Although we have tested those compo-
nents in different configurations, they may still contain faults.
We make them available, as well as raw and intermediate data,
for the community to reuse and assist in improving them at
https://github.com/less-lab-uva/T4PC [Archive].

Third, from a construct validity perspective, in these exper-
iments the DNNs trained for conformance are judged against
a validation set in terms of property violations and main loss.
This assessment is limited in that it computes those metrics
against an evaluation dataset and the impact of changes in the
main loss metric in the absence of an enclosing system context.
We address this concern in the next section by applying
T4PC to a real autonomous system, running it in a simulated
environment that provides a range of driving metrics.

V. CASE STUDY IN SIMULATION

This study aims to broaden the T4PC effectiveness assess-
ment from Section IV along 4 dimensions: 1) target two AV
systems developed by third parties with different architectures
and consuming multiple inputs; 2) fine-tune each system for
multiple property conformance; 3) deploy the systems in a
series of CARLA [61] simulated environments; and 4) judge
the systems using CARLA’s driving assessment measures.

A. Target Systems and Execution Environment

We target the TCP [59] and Interfuser [63] AV systems,
two of the three best performing in the CARLA Leaderboard
competition [60]. These systems were selected due to their
strong performance and architectural diversity. TCP is a fully
end-to-end DNN, while Interfuser combines a DNN with a
rule-based module written in Python. Since T4PC requires the
entire system to be differentiable, we approximate the relevant
portions of Interfuser’s coded module with a DNN during
training to enable the use of our property-based loss function.7

TCP takes in a single image from an RGB camera, the ego’s
speed, and the target waypoint. Its architecture includes a
ResNet34 [67] image encoder, and two GRU [68] branches
for steering angle and acceleration predictions. In contrast,

7In principle, any coded module could be approximated using a data-
driven method such as a DNN. However, such approximations become more
difficult and require more data and sophisticated architectures as the module
complexity increases or incorporates internal states.

Interfuser takes in images from 3 RGB cameras, a LiDAR
point cloud, the ego’s speed, and the target waypoint. It fea-
tures a ResNet50 image encoder and a ResNet18-based LiDAR
encoder. These features are fused using a transformer encoder-
decoder, which outputs ten future waypoints, a semantic
feature map, and traffic-related information, including traffic
light status, stop sign presence, and intersection detection.
These outputs are then passed to a coded controller, which
produces the final steering angle and acceleration commands.
As we only target acceleration-based properties for Interfuser
(explained in Section V-B), we only need to approximate the
acceleration portion of the controller. To do so, we collected
the inputs it consumes and the acceleration outputs it produces
over the same dataset, and trained a DNN that achieved 0.04
Mean Absolute Error (more details available in the appendix).
Both systems produce a steering angle in the range [−1, 1],
representing -70 and 70 degrees, and acceleration in the range
[−1, 0.75]. We use publicly available pretrained weights from
the respective repositories. For evaluation, both AV systems
are deployed in simulation on ten routes in Town 05, which
are excluded from training and validation. This town includes
a variety of roads (e.g., 2-lane roads, 3 and 4-lane highways,
and T intersections) and a variety of entities (e.g., traffic lights,
stop signs, pedestrians, cyclists, cars, and trucks).

B. Properties
Despite its high ranking, we observed that TCP struggled to

comply with stop signs. To address this, we defined two prop-
erties (ϕ7 and ϕ8 in Table I) targeting stop sign behavior. ϕ7

enforces stopping at a stop sign, while ϕ8 promotes resuming
motion once a full stop has occurred. The preconditions of
these two properties differ slightly; ϕ8 includes a constraint
requiring no entity to be within 7 meters ahead, ensuring
safe acceleration, while ϕ7 does not. We adopt a 0.1 m/s
speed threshold—used by CARLA’s low-level controller—to
define when the vehicle is considered “stopped.” If a stop sign
controls the ego lane and speed exceeds this threshold, the
vehicle should decelerate; otherwise, it should accelerate.

Interfuser exhibited violations such as running red lights or
colliding with pedestrians and other vehicles. These failures
align closely with the behaviors targeted by several of the
properties used in the controlled experiment. As a result, we
fine-tune Interfuser with properties ϕ1–ϕ4 from Table I.

11

https://github.com/less-lab-uva/T4PC
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/less-lab-uva/T4PC

TABLE II: TCP and Interfuser results. Values in bold are statistically significantly better.

(a) TCP scores and infractions

Treatment Driving
Score ↑ Collision

Vehicles ↓ Stop Sign
Infraction ↓ Vehicle

Blocked ↓

T4PC 10% 81.09±6.58 0.13±0.17 0.54±0.20 0.09±0.09
Base 10% 79.20±4.34 0.12±0.14 0.98±0.22 0.00±0.00
T4PC 15% 81.98±5.16 0.16±0.13 0.59±0.18 0.03±0.05
Base 15% 78.37±3.48 0.11±0.09 1.02±0.17 0.01±0.03
T4PC 20% 81.81±4.77 0.10±0.10 0.76±0.23 0.02±0.04
Base 20% 75.99±3.31 0.16±0.10 1.06±0.19 0.01±0.03

(b) Interfuser scores and infractions

Treatment Driving
Score ↑ Collision

Pedestrians ↓ Red Light
Infraction ↓ Route

Timeout ↓

T4PC 10% 58.40±9.22 0.21±0.13 0.42±0.11 0.20±0.15
Base 10% 59.44±8.33 0.19±0.12 0.44±0.12 0.22±0.11
T4PC 15% 63.90±8.33 0.16±0.10 0.24±0.10 0.17±0.14
Base 15% 59.45±8.35 0.15±0.11 0.43±0.10 0.21±0.15
T4PC 20% 62.48±9.16 0.17±0.10 0.19±0.08 0.23±0.17
Base 20% 60.15±6.92 0.28±0.15 0.42±0.11 0.14±0.10

While these properties are relatively simple, they reflect
the single-frame nature of TCP’s and Interfuser’s perception
models. We leave exploring richer, temporal properties that
better capture the full space of traffic rules for future work.

C. Dataset

For training TCP with T4PC, we reused the dataset from
the controlled experiments described in Section IV, which
includes single RGB images, ego speed, and target waypoints,
along with the labels required by TCP [69]. Unlike the original
TCP that used 4 towns for training and 4 for validation,
we used 3 towns for training (1, 4, and 10), and 3 for
validation (2, 5, and 7) because we collected 6/8 towns as
explained in Section IV-A. For training Interfuser with T4PC,
we collected a new dataset using its official data collection
scripts in CARLA. The dataset contains 138,585 frames,
each with 3 RGB images, a LiDAR point cloud, steering
angle, acceleration, and a scene graph. Data was collected
across 6 CARLA towns, and we followed Interfuser’s standard
procedure of executing multiple routes per town, where each
route guides the ego vehicle through a sequence of waypoints.
Following the original Interfuser, we used 5 towns (1, 2, 4,
7, and 10) for training8, excluding two due to collecting data
from only 6 of the 8 towns, as discussed in Section IV-A, and
1 town for validation (5). Details on the data augmentation
used during training are provided in the appendix.

D. TCP Application

We fine-tune the TCP and Interfuser DNNs released by
the authors with and without T4PC9. To fine-tune the DNNs,
we used the same hyperparameters defined by the authors of
TCP and Interfuser. We fine-tuned the DNNs for 5, 10, and
15 epochs for TCP and 3, 5, and 7 epochs for Interfuser,
corresponding to approximately 10%, 15%, and 20% of their
original training schedules of 60 and 35 epochs, respectively.
The decision of 10%, 15%, and 20% matches what is shown
in Figure 5, where we picked 15 epochs to strike a balance
between performance and cost which represents 10% of the
155 epochs. The two greater percentages are meant to sam-
ple from the region where better results appeared without
incurring significant training costs. More details about the
hyperparameters and hardware are provided in the appendix.

8We limit data collection to only the default weather configuration as
changing weather is not part of any property.

9Fine-tuning the DNNs without T4PC allows us to refine it with the same
data we collected from CARLA.

After fine-tuning, we evaluate the DNNs using the 10
evaluation routes described in Section V-A. To account for
variation in training, we train 5 DNNs with T4PC and 5 DNNs
without T4PC, using the 3 different number of epochs, for
a total 30 DNNs per AV system. Likewise, to account for
variation during the evaluation of the DNNs in simulation, we
ran each DNN in CARLA 5 times. We then group the results
by epochs trained and whether it was trained with T4PC or not,
resulting in 25 data points (5 DNNs by 5 runs), and aggregated
them by taking the mean and standard deviation. Of the several
metrics CARLA calculates, we report the overall driving score
and the average infraction scores that include a statistically
significant difference for each system10.

E. Results

Table II provides a summary of the results for TCP (left) and
Interfuser (right), with the rows alternating between optimiza-
tion with T4PC and the baseline, for the different percentages
of training epochs. The bold values are significantly better,
determined by a t-test with p-value of 0.05.

Table IIa shows that TCP’s stop sign infractions, the one that
we aim to reduce, decreased significantly (bold) with T4PC, by
38%. Meanwhile, the driving score column shows that T4PC
also increased the driving score in all cases, on average by
5%, with the improvements by the DNNs trained with 15%
and 20% of the epochs deemed significant. The other two
columns provide insight into the side-effects of optimizing
for ϕ7 and ϕ8 on other types of infractions (collisions with
vehicles and vehicles blocked). For models trained with 10%
of epochs, we find that prioritizing these properties leads to a
significant increase in vehicle blocked infractions. However,
when training for 20% of epochs, T4PC renders similar
results for the vehicle blocked infractions, while significantly
reducing infractions from collisions. This suggests that training
TCP for more epochs allows it to perform significantly better,
while not making other infractions worse. Overall, these results
show that the TCP models trained with T4PC using the 2
properties defined above can significantly reduce the number
of stop sign infractions and slightly increase the CARLA
driving score, a tall order given that TCP is one of the leaders
in the CARLA leaderboard.

Table IIb shows that Interfuser’s red light infractions are
significantly reduced with T4PC when training for 15% and

10Other metrics did not lead to statistically significant differences. Tables
with all metrics available in appendix.

12

20% of epochs, and pedestrian collisions are significantly
reduced when training for 20% of epochs, both properties
targeted by T4PC. The driving score improves with models
trained with 15% and 20% of epochs using T4PC, though the
changes are not significant, and the route timeout infractions
are significantly worse for models trained with 20% of epochs.
This could be explained by two main factors. First, the
properties may not be specific enough, e.g., ϕ3 is designed to
make the ego vehicle move if there is nothing in front and in
the same lane but does not consider cases where multiple lanes
overlap (intersections), not helping Interfuser move in those
situations. Second, the DNN approximation we trained for
mimicking the Interfuser’s Python component, although 95%
accurate, is not perfect and can introduce noise when training
the Interfuser DNN. Further, there may exist latent faults
within Interfuser’s Python component that are beyond the
reach of T4PC’s ability to improve the system’s performance
through training. Although T4PC was less effective overall at
significantly decreasing Interfuser’s violations as compared to
TCP’s, these results indicate T4PC’s ability to provide benefit
for heterogeneous architecture systems as well.

T4PC is able to fine-tune two existing open-source
AV systems optimized for the CARLA competition,
decreasing the number of infractions, and improving
their overall driving score.

F. Threats to Validity of Case Study Findings
This case study has similar threats to the previous experi-

ments. Although it reduces the external validity and construct
threats by utilizing two third-party DNNs, deploying them in
the widely used CARLA simulation environment, and using
the environment’s builtin metrics to judge performance. Still,
the simulation environment has limitations as the findings may
not translate to real deployed systems equipped with DNNs,
limiting the generalization to real-world applications.

VI. CONCLUSION
We have introduced T4PC, a complementary approach to

existing V&V techniques that instead of checking for property
conformance after a DNN is trained, directly trains a DNN
towards high-level property conformance. The approach is
novel in its use of SGs as sensor input abstractions for
evaluating safe driving property preconditions, and its inte-
gration of property loss into the optimization process. Our
experiments and case study provide evidence about T4PC’s
potential to reduce property violations for AV systems, while
maintaining main loss. In future work, we aim to broaden the
type of properties to consider, extend T4PC to handle more
complex multi-module systems, compare and investigate the
interaction with runtime enforcement approaches, and study its
applicability in other domains like factory or surgical robots.

VII. ACKNOWLEDGMENTS
This research is supported in part by NSF awards 2312487

and 2403060; by ARO grant W911NF-24-1-0089; by Lock-
heed Martin Advanced Technology Labs; and by Copenhaver

Charitable Trust. The authors acknowledge Research Com-
puting at The University of Virginia for providing access to
computational resources.

REFERENCES

[1] F. Lambert, “Tesla finally releases fsd v12, its last hope for self-driving,”
Jan 2024, accessed on 08.20.2024. Link.

[2] A. J. Hawkins, “Inside waymo’s strategy to grow the best brains for
self-driving cars,” May 2018, accessed on 08.20.2024. Link.

[3] comma.ai, “How openpilot works in 2021,” Oct 2021, accessed on
08.20.2024. Link.

[4] A. Marshall, “Uber video shows the kind of crash self-driving cars are
made to avoid,” Mar 2018, accessed on 07.25.2025. Link.

[5] A. Roy and H. Jin, “California regulator probes crashes involving gm’s
cruise robotaxis,” Aug 2023, accessed on 07.25.2025. Link.

[6] R. Bellan, “A waymo self-driving car killed a dog in ‘unavoidable’
accident,” Jun 2023, accessed on 07.25.2025. Link.

[7] T. Thadani, “Cruise recalls all its driverless cars after pedestrian hit and
dragged,” Nov 2023, accessed on 07.25.2025. Link.

[8] G. Katz et al., “The marabou framework for verification and analysis
of deep neural networks,” in Computer Aided Verification: 31st Inter-
national Conference, CAV 2019, New York City, NY, USA, July 15-18,
2019, Proceedings, Part I 31. Springer, 2019, pp. 443–452.

[9] D. Shriver, S. Elbaum, and M. B. Dwyer, “Dnnv: A framework for deep
neural network verification,” in International Conference on Computer
Aided Verification. Springer, 2021, pp. 137–150.

[10] H. Zhang, S. Wang, K. Xu, L. Li, B. Li, S. Jana, C.-J. Hsieh,
and J. Z. Kolter, “General cutting planes for bound-propagation-based
neural network verification,” Advances in neural information processing
systems, vol. 35, pp. 1656–1670, 2022.

[11] H. Duong, D. Xu, T. Nguyen, and M. B. Dwyer, “Harnessing neuron
stability to improve dnn verification,” Proceedings of the ACM on
Software Engineering, vol. 1, no. FSE, pp. 859–881, 2024.

[12] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th international conference on software engineering, 2018.

[13] T. Zohdinasab et al., V. Riccio, and P. Tonella, “Deepatash: Focused test
generation for deep learning systems,” in Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2023, pp. 954–966.

[14] L. Wang, X. Xie, X. Du, M. Tian, Q. Guo, Z. Yang, and C. Shen,
“Distxplore: Distribution-guided testing for evaluating and enhancing
deep learning systems,” in Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2023, pp. 68–80.

[15] S. Dola, R. McDaniel, M. B. Dwyer, and M. L. Soffa, “Cit4dnn:
Generating diverse and rare inputs for neural networks using latent
space combinatorial testing,” in Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, 2024, pp. 1–13.

[16] K. Viswanadha, E. Kim, F. Indaheng, D. J. Fremont, and S. A. Seshia,
“Parallel and multi-objective falsification with scenic and verifai,” in
Runtime Verification: 21st International Conference, RV 2021, Virtual
Event, October 11–14, 2021, Proceedings 21. Springer, 2021.

[17] F. Toledo, D. Shriver, S. Elbaum, and M. B. Dwyer, “Deeper notions
of correctness in image-based dnns: Lifting properties from pixel to
entities,” in Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2023, pp. 2122–2126.

[18] T. Woodlief, F. Toledo, S. Elbaum, and M. B. Dwyer, “S3c: Spatial
semantic scene coverage for autonomous vehicles,” in Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering,
2024, pp. 1–13.

[19] F. Toledo, T. Woodlief, S. Elbaum, and M. Dwyer, “Specifying and
monitoring safe driving properties with scene graphs,” in 2024 IEEE
International Conference on Robotics and Automation (ICRA), 2024.

[20] J. Zhang and J. Li, “Testing and verification of neural-network-based
safety-critical control software: A systematic literature review,” Infor-
mation and Software Technology, vol. 123, p. 106296, 2020.

[21] X. Huang, D. Kroening, W. Ruan, J. Sharp, Y. Sun, E. Thamo, M. Wu,
and X. Yi, “A survey of safety and trustworthiness of deep neural
networks: Verification, testing, adversarial attack and defence, and
interpretability,” Computer Science Review, vol. 37, p. 100270, 2020.

[22] M. Diligenti, S. Roychowdhury, and M. Gori, “Integrating prior knowl-
edge into deep learning,” in 2017 16th IEEE International Conference
on Machine Learning and Applications (ICMLA), 2017, pp. 920–923.

13

https://electrek.co/2024/01/22/tesla-releases-fsd-v12-last-hope-self-driving/
https://www.theverge.com/2018/5/9/17307156/google-waymo-driverless-cars-deep-learning-neural-net-interview
https://blog.comma.ai/openpilot-in-2021/
https://www.wired.com/story/uber-self-driving-crash-video-arizona/
https://www.reuters.com/business/autos-transportation/gms-cruise-robotaxi-collides-with-fire-truck-san-francisco-2023-08-19/
https://techcrunch.com/2023/06/06/a-waymo-self-driving-car-killed-a-dog-in-unavoidable-accident/
https://www.washingtonpost.com/technology/2023/11/08/cruise-crash-driverless-recall/

[23] J. Xu et al., “A semantic loss function for deep learning with symbolic
knowledge,” 2018.

[24] M. Fischer et al., “DL2: Training and querying neural networks with
logic,” in Proceedings of the 36th International Conference on Machine
Learning, vol. 97. PMLR, 09–15 Jun 2019, pp. 1931–1941.

[25] K. Ahmed, K.-W. Chang, and G. Van den Broeck, “Semantic strength-
ening of neuro-symbolic learning,” in International Conference on
Artificial Intelligence and Statistics. PMLR, 2023, pp. 10 252–10 261.

[26] D. Shriver, S. Elbaum, and M. B. Dwyer, “Reducing dnn properties to
enable falsification with adversarial attacks,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021.

[27] B. Aminof, A. Murano, S. Rubin, and F. Zuleger, “Verification of asyn-
chronous mobile-robots in partially-known environments,” in PRIMA
2015: Principles and Practice of Multi-Agent Systems. Cham: Springer
International Publishing, 2015, pp. 185–200.

[28] C. Morse, L. Feng, M. Dwyer, and S. Elbaum, “A framework for the
unsupervised inference of relations between sensed object spatial dis-
tributions and robot behaviors,” in 2023 IEEE International Conference
on Robotics and Automation (ICRA), 2023, pp. 901–908.

[29] H. Khosrowjerdi and K. Meinke, “Learning-based testing for au-
tonomous systems using spatial and temporal requirements,” in Pro-
ceedings of the 1st International Workshop on Machine Learning and
Software Engineering in Symbiosis. New York, NY, USA: Association
for Computing Machinery, 2018, p. 6–15.

[30] T. Reinbacher, M. Függer, and J. Brauer, “Runtime verification of
embedded real-time systems,” Formal methods in system design, 2014.

[31] S. Pinisetty, P. S. Roop, S. Smyth, N. Allen, S. Tripakis, and R. V.
Hanxleden, “Runtime enforcement of cyber-physical systems,” ACM
Transactions on Embedded Computing Systems (TECS), 2017.

[32] H. Jiang, S. Elbaum, and C. Detweiler, “Reducing failure rates of
robotic systems though inferred invariants monitoring,” in International
Conference on Intelligent Robots and Systems. IEEE, 2013.

[33] A. Desai, T. Dreossi, and S. A. Seshia, “Combining model checking and
runtime verification for safe robotics,” in Runtime Verification, S. Lahiri
and G. Reger, Eds. Cham: Springer International Publishing, 2017.

[34] C. Gladisch et al., “Experience paper: search-based testing in automated
driving control applications,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), ser. ASE ’19.
IEEE Press, 2020, p. 26–37.

[35] H. Araujo, M. R. Mousavi, and M. Varshosaz, “Testing, validation, and
verification of robotic and autonomous systems: A systematic review,”
ACM Trans. Softw. Eng. Methodol., vol. 32, no. 2, mar 2023.

[36] S. Demarchi, D. Guidotti, L. Pulina, A. Tacchella, N. Narodytska,
G. Amir, G. Katz, and O. Isac, “Supporting standardization of neural
networks verification with vnnlib and coconet.” in FoMLAS@CAV, 2023.

[37] X. Chang, P. Ren, P. Xu, Z. Li, X. Chen, and A. Hauptmann, “A
comprehensive survey of scene graphs: Generation and application,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[38] H. Li, G. Zhu, L. Zhang, Y. Jiang, Y. Dang, H. Hou, P. Shen, X. Zhao,
S. A. A. Shah, and M. Bennamoun, “Scene graph generation: A
comprehensive survey,” Neurocomput., vol. 566, no. C, mar 2024.

[39] A. V. Malawade, S.-Y. Yu, B. Hsu, H. Kaeley, A. Karra, and M. A.
Al Faruque, “Roadscene2vec: A tool for extracting and embedding road
scene-graphs,” Know.-Based Syst., vol. 242, no. C, apr 2022.

[40] J. Li et al., “Important object identification with semi-supervised learning
for autonomous driving,” in 2022 International Conference on Robotics
and Automation (ICRA), 2022, p. 2913–2919.

[41] A. Prakash, S. Debnath, J.-F. Lafleche, E. Cameracci, G. State, S. Birch-
field, and M. T. Law, “Self-supervised real-to-sim scene generation,” in
2021 IEEE/CVF International Conference on Computer Vision (ICCV),
2021, pp. 16 024–16 034.

[42] T. Woodlief, F. Toledo, S. Elbaum, and M. B. Dwyer, “Closing the
gap between sensor inputs and driving properties: A scene graph
generator for carla,” in 2025 IEEE/ACM 47th International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion).
IEEE, 2025, pp. 29–32.

[43] R. Li, S. Zhang, D. Lin, K. Chen, and X. He, “From pixels to graphs:
Open-vocabulary scene graph generation with vision-language models,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 28 076–28 086.

[44] F. Toledo, S. Elbaum, D. Gopinath, R. Kaur, R. Mangal, C. S. Pasareanu,
A. Roy, and S. Jha, “Monitoring safety properties for autonomous
driving systems with vision-language models,” 2025, accessed on
08.11.2025. Link.

[45] B. Li, P. Qi, B. Liu, S. Di, J. Liu, J. Pei, J. Yi, and B. Zhou, “Trustworthy
ai: From principles to practices,” ACM Comput. Surv., 2023.

[46] Y. Sun, C. M. Poskitt, X. Zhang, and J. Sun, “Redriver: Runtime
enforcement for autonomous vehicles,” in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, ser. ICSE ’24.
New York, NY, USA: Association for Computing Machinery, 2024.

[47] L. von Rueden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach,
R. Heese, B. Kirsch, J. Pfrommer, A. Pick, R. Ramamurthy, M. Walczak,
J. Garcke, C. Bauckhage, and J. Schuecker, “Informed machine learning
– a taxonomy and survey of integrating prior knowledge into learning
systems,” IEEE Transactions on Knowledge and Data Engineering,
vol. 35, no. 1, pp. 614–633, 2023.

[48] X. Li, C.-I. Vasile, and C. Belta, “Reinforcement learning with temporal
logic rewards,” in 2017 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2017, pp. 3834–3839.

[49] A. Balakrishnan and J. V. Deshmukh, “Structured reward shaping using
signal temporal logic specifications,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019.

[50] H. Hasanbeig, D. Kroening, and A. Abate, “Certified reinforcement
learning with logic guidance,” Artificial Intelligence, vol. 322, p. 103949,
2023.

[51] A. Karpatne, W. Watkins, J. S. Read, and V. Kumar, “Physics-guided
neural networks (pgnn): An application in lake temperature modeling,”
ArXiv, vol. abs/1710.11431, 2017.

[52] R. Stewart and S. Ermon, “Label-free supervision of neural networks
with physics and domain knowledge,” in Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, ser. AAAI’17. AAAI Press,
2017, p. 2576–2582.

[53] N. Muralidhar, M. R. Islam, M. Marwah, A. Karpatne, and N. Ra-
makrishnan, “Incorporating prior domain knowledge into deep neural
networks,” in 2018 IEEE International Conference on Big Data (Big
Data), 2018, pp. 36–45.

[54] V. D. of Motor Vehicles, “Virginia driver’s manual,” accessed on
04.23.2025. Link.

[55] T. Woodlief, S. Elbaum, and K. Sullivan, “Semantic image fuzzing
of ai perception systems,” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 1958–1969.

[56] D. Jackson, “Alloy: a lightweight object modelling notation,” ACM
Transactions on software engineering and methodology (TOSEM),
vol. 11, no. 2, pp. 256–290, 2002.

[57] F. Fioretto, P. Van Hentenryck, T. W. K. Mak, C. Tran, F. Baldo, and
M. Lombardi, “Lagrangian duality for constrained deep learning,” in
Machine Learning and Knowledge Discovery in Databases. Applied
Data Science and Demo Track. Cham: Springer, 2021, pp. 118–135.

[58] A. Paszke et al., PyTorch: an imperative style, high-performance deep
learning library. Red Hook, NY, USA: Curran Associates Inc., 2019.

[59] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao, “Trajectory-guided
control prediction for end-to-end autonomous driving: a simple yet
strong baseline,” in Proceedings of the 36th International Conference
on Neural Information Processing Systems, ser. NIPS ’22. Red Hook,
NY, USA: Curran Associates Inc., 2024.

[60] CarlaSimulator, “Carla leaderboard,” accessed on 2024-07-19. Link.
[61] A. D. et al., “CARLA: an open urban driving simulator,” CoRR, vol.

abs/1711.03938, 2017.
[62] PapersWithCode, “Scene graph generation on visual genome,” 2023,

accessed on 08.20.2024. Link.
[63] H. Shao, L. Wang, R. Chen, H. Li, and Y. Liu, “Safety-enhanced

autonomous driving using interpretable sensor fusion transformer,” in
Conference on Robot Learning. PMLR, 2023, pp. 726–737.

[64] D. Chen and P. Krähenbühl, “Learning from all vehicles,” in 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2022, pp. 17 201–17 210.

[65] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
2019, accessed on 08.11.2025. Link.

[66] V. Arampatzakis et al., “Monocular depth estimation: A thorough re-
view,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 46, no. 4, pp. 2396–2414, 2024.

[67] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[68] K. Cho et al., “Learning phrase representations using rnn en-
coder–decoder for statistical machine translation,” in Conference on
Empirical Methods in Natural Language Processing, 2014.

[69] OpenDriveLab, “Tcp training configuration,” https://github.com/
OpenDriveLab/TCP/blob/main/TCP/config.py, accessed: 2024-07-19.

14

https://github.com/less-lab-uva/DriST/tree/main
https://law.lis.virginia.gov/vacode/title46.2/chapter8/
https://leaderboard.carla.org/#leaderboard-10
https://paperswithcode.com/sota/scene-graph-generation-on-visual-genome
https://github.com/facebookresearch/detectron2
https://github.com/OpenDriveLab/TCP/blob/main/TCP/config.py
https://github.com/OpenDriveLab/TCP/blob/main/TCP/config.py

APPENDIX

A. Controlled Experiment Dataset

To provide more information about the dataset used in the
controlled experiment, we include the following additional
data. Table III shows the number of data points in each of
our 6 splits. The train and validation columns represent the
number of samples from the remaining towns, while the test
column represents the number of samples from the town left
out. Table IV shows the number of training and validation data
points in each of the towns. Table V shows the number of
property preconditions satisfied per split. The town mentioned
in the split column is the one left out.

TABLE III: Data points for each split.

Split Train Val Test

Town 01 left out 345,757 45,674 9,056
Town 02 left out 338,732 48,040 6,690
Town 04 left out 361,018 47,564 7,166
Town 05 left out 339,656 43,480 11,250
Town 07 left out 366,186 45,251 9,479
Town 10 left out 344,416 43,641 11,089

TABLE IV: Number of train and val data points per town.

Town Train Val Total

Town 01 73,396 9,056 82,452
Town 02 80,421 6,690 87,111
Town 04 58,135 7,166 65,301
Town 05 79,497 11,250 90,747
Town 07 52,967 9,479 62,446
Town 10 74,737 11,089 85,826

TABLE V: Properties’ preconditions for each split.

Split ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

Town 01 71,590 114,279 58,813 21,538 190,678 173,238
Town 02 64,462 114,947 62,016 20,310 185,042 167,602
Town 04 82,899 124,266 51,394 24,732 220,419 205,241
Town 05 80,600 108,778 55,791 22,618 217,678 212,275
Town 07 75,898 136,267 60,898 26,541 223,841 206,229
Town 10 75,546 127,588 55,513 23,771 224,367 210,240
Average 75,166 121,021 57,404 23,252 210,338 195,804

Furthermore, we present the number of violations for each
property and split given the number of properties in the
optimization in Table VI. B represent the base models and
M represent the models trained with T4PC. These violations
appear on the towns left out during training.

B. Case Study Details

1) Interfuser controller approximation: Interfuser employs
a controller implemented in Python, consisting of over 400
lines of code. We cannot directly apply T4PC to Interfuser
because this module is not differentiable. To address this,
we approximate the controller by collecting its inputs and
outputs and training a DNN. The controller takes as input ten
future waypoints, a semantic feature map, and traffic-related
information such as traffic light status, stop sign presence, and
intersection detection. Its outputs a steering angle ranging from
-1 to 1, and acceleration ranging from -1 to 0.75. Since the
properties we aim to improve depend solely on acceleration,

we focus our approximation efforts on that output. The DNN
architecture consists of six fully connected layers with 2,824,
2,500, 2,000, 1,500, 1,000, and 500 neurons respectively,
each using ReLU activation functions. The input layer has
2,824 neurons to match the dimensionality of the flattened
input features. We train the model using Mean Absolute Error
(MAE) as the loss function, the Adam optimizer, and a learn-
ing rate of 10−4. Training runs for up to 1,000 epochs with
a ReduceLROnPlateau learning rate scheduler using default
parameters, reducing the learning rate by a factor of 10 if
validation performance does not improve for 10 consecutive
epochs. Early stopping is triggered if the learning rate falls
below 10−7. Training concluded at epoch 62, achieving a final
MAE of 0.04.

2) Data augmentation: The application of T4PC to TCP re-
quired property-based augmentation because the preconditions
were only met for ϕ7 and ϕ8 by 913/206,268 (0.44%) and
481/206,268 (0.23%) dataset inputs. To bring these numbers
closer to the proportions used in the experiment, we arbitrarily
selected a δ of 10% for ϕ7

x and 5% for ϕ8
x. We wanted to have

more data points that meet ϕ7
x compared to ϕ8

x because we
found that TCP struggled to stop when there was a stop sign.
We then defined a pool of transformation candidates by re-
trieving the data points with the same properties’ preconditions
met except for the ego speed constraint (less than 0.70% of
dataset). Then we used two metamorphic functions, one for ϕ7

and one for ϕ8, to adjust the speeds of the data points to satisfy
the preconditions. For example, given an input x that meets the
ϕ7 precondition with x.speed ≥ 0.1, f0.5 changes x’s speed to
0.5 (still meeting the precondition), while the corresponding
g0.5(y) = y is the identity as changing the speed should not
change the output, but helps increase the DNN robustness.
The functions generate 19 and 10 new data points for each
element in the transformation candidate pool, producing a total
of 26,505/246,633 (10.75%) and 13,860/246,633 (5.62%), sat-
isfying the target δ. This property-based augmentation dataset
is then used by T4PC.

In contrast, we did not apply data augmentation when
training Interfuser with T4PC, as the collected dataset al-
ready contained sufficient coverage of property preconditions.
Specifically, 18.44% of the data met the ϕ1 precondition,
34.67% ϕ2, 16.49% ϕ3, and 9.01% ϕ4.

3) Training Hyperparameters and Hardware: For TCP,
we followed its original training setup. We used the Adam
optimizer and a starting lr of 5 × 10−5, consistent with the
final stage of its original training procedure. The lr was
halved midway through training, as in the original setup. When
applying T4PC, we used a property loss weight ρ of 0.1. We
used a batch size of 256 and performed training on 8 CPU
cores, 200GB of RAM, and 2 A100 GPUs.

For Interfuser, we also followed its original training setup
by using the Adam optimizer with an initial learning rate (lr)
of 5×10−5—the final rate used in their official training—and
applied a cosine lr scheduler. When training with T4PC, we
set the property loss weight ρ to 0.001, as higher values were
found to disrupt the main losses. We used a batch size of 64
and ran experiments on a machine with 16 CPU cores, 250GB
of RAM, and 4 A40 GPUs.

TABLE VI: Property violations per split and # of properties in optimization

1 prop 2 props 4 props 6 props Ft 1 prop
B M B M B M B M B M

Property Split

ϕ1 - StopToAvoidCollision Town 01 132.0 27.0 132.0 33.8 132.0 44.6 132.0 25.0 136.0 32.0
Town 02 98.0 28.0 98.0 37.8 98.0 40.0 98.0 46.0 97.0 14.0
Town 04 38.0 14.0 38.0 28.8 38.0 35.5 38.0 70.0 36.0 15.0
Town 05 97.0 53.0 97.0 44.2 97.0 41.4 97.0 32.0 95.0 56.0
Town 07 133.0 61.0 133.0 99.4 133.0 140.5 133.0 227.0 131.0 62.0
Town 10 24.0 9.0 24.0 7.4 24.0 9.0 24.0 23.0 23.0 8.0

ϕ2 - StopForYellowRed Town 01 978.0 303.0 978.0 259.6 978.0 234.7 978.0 241.0 1000.0 327.0
Town 02 582.0 74.0 582.0 64.2 582.0 47.5 582.0 59.0 582.0 60.0
Town 04 743.0 63.0 743.0 57.4 743.0 48.0 743.0 59.0 754.0 77.0
Town 05 602.0 56.0 602.0 75.2 602.0 84.3 602.0 90.0 590.0 79.0
Town 07 461.0 294.0 461.0 250.2 461.0 257.2 461.0 258.0 454.0 314.0
Town 10 832.0 64.0 832.0 143.6 832.0 316.4 832.0 411.0 863.0 138.0

ϕ3 - NoStopForNoReason Town 01 24.0 3.0 24.0 12.2 24.0 25.8 24.0 48.0 24.0 4.0
Town 02 94.0 89.0 94.0 93.6 94.0 129.8 94.0 156.0 93.0 77.0
Town 04 68.0 1.0 68.0 12.2 68.0 33.8 68.0 43.0 72.0 4.0
Town 05 155.0 55.0 155.0 81.6 155.0 108.1 155.0 118.0 152.0 72.0
Town 07 389.0 106.0 389.0 169.6 389.0 297.7 389.0 389.0 385.0 130.0
Town 10 1563.0 1257.0 1563.0 1236.0 1563.0 1263.4 1563.0 1027.0 1559.0 1198.0

ϕ4 - AccelerateForGreen Town 01 63.0 21.0 63.0 30.4 63.0 46.2 63.0 94.0 60.0 17.0
Town 02 78.0 33.0 78.0 37.4 78.0 58.1 78.0 47.0 78.0 21.0
Town 04 22.0 2.0 22.0 5.6 22.0 7.3 22.0 7.0 22.0 0.0
Town 05 229.0 58.0 229.0 68.4 229.0 86.7 229.0 152.0 226.0 91.0
Town 07 39.0 3.0 39.0 8.6 39.0 12.0 39.0 14.0 34.0 4.0
Town 10 157.0 73.0 157.0 118.0 157.0 174.4 157.0 157.0 150.0 49.0

ϕ5 - NoSteerRightOutRoad Town 01 1531.0 0.0 1531.0 0.0 1531.0 0.0 1531.0 0.0 1552.0 0.0
Town 02 1114.0 0.0 1114.0 0.0 1114.0 0.0 1114.0 0.0 1156.0 0.0
Town 04 564.0 0.0 564.0 0.0 564.0 0.0 564.0 0.0 503.0 0.0
Town 05 2440.0 0.0 2440.0 0.0 2440.0 0.0 2440.0 0.0 2444.0 93.0
Town 07 263.0 0.0 263.0 0.0 263.0 0.0 263.0 0.0 268.0 0.0
Town 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ϕ6 - NoSteerLeftOutRoad Town 01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Town 02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Town 04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Town 05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Town 07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Town 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4) Extended tables: Full CARLA leaderboard infractions
table for TCP (Table VII, extension of Table IIa) and Interfuser
(Table VIII, extension of Table IIb).

TABLE VII: TCP infractions. Bold means statistically significantly better.

Treatment Driving
Score ↑ Collision

Layout ↓ Collision
Pedestrians ↓ Collision

Vehicles ↓ Outside
Lanes ↓ Red Light

Infraction ↓ Route
Deviation ↓ Route

Timeout ↓
Stop Sign
Infraction ↓ Vehicle

Blocked ↓

T4PC 5 81.09±6.58 0.00±0.00 0.00±0.00 0.13±0.17 0.00±0.00 0.04±0.05 0.00±0.00 0.01±0.03 0.54±0.20 0.09±0.09
Base 5 79.20±4.34 0.00±0.00 0.00±0.00 0.12±0.14 0.00±0.00 0.04±0.06 0.00±0.00 0.00±0.00 0.98±0.22 0.00±0.00
T4PC 10 81.98±5.16 0.00±0.00 0.00±0.00 0.16±0.13 0.00±0.00 0.04±0.06 0.00±0.00 0.01±0.03 0.59±0.18 0.03±0.05
Base 10 78.37±3.48 0.00±0.00 0.00±0.00 0.11±0.09 0.00±0.02 0.02±0.04 0.00±0.00 0.00±0.00 1.02±0.17 0.01±0.03
T4PC 15 81.81±4.77 0.00±0.00 0.00±0.00 0.10±0.10 0.00±0.00 0.03±0.05 0.00±0.00 0.00±0.00 0.76±0.23 0.02±0.04
Base 15 75.99±3.31 0.00±0.00 0.00±0.00 0.16±0.10 0.00±0.00 0.03±0.06 0.00±0.00 0.00±0.02 1.06±0.19 0.01±0.03

TABLE VIII: Interfuser infractions. Bold means statistically significantly better.

Treatment Driving
Score ↑ Collision

Layout ↓ Collision
Pedestrians ↓ Collision

Vehicles ↓ Outside
Lanes ↓ Red Light

Infraction ↓ Route
Deviation ↓ Route

Timeout ↓
Stop Sign
Infraction ↓ Vehicle

Blocked ↓

T4PC 3 58.40±9.22 0.00±0.00 0.21±0.13 0.61±0.31 0.00±0.00 0.42±0.11 0.00±0.00 0.20±0.15 0.00±0.00 0.00±0.00
Base 3 59.44±8.33 0.00±0.02 0.19±0.12 0.51±0.26 0.01±0.03 0.44±0.12 0.00±0.00 0.22±0.11 0.00±0.00 0.00±0.02
T4PC 5 63.90±8.33 0.00±0.00 0.16±0.10 0.60±0.27 0.01±0.03 0.24±0.10 0.00±0.00 0.17±0.14 0.00±0.00 0.00±0.00
Base 5 59.45±8.35 0.00±0.00 0.15±0.11 0.53±0.23 0.00±0.00 0.43±0.10 0.00±0.00 0.21±0.15 0.00±0.00 0.00±0.00
T4PC 7 62.48±9.16 0.00±0.00 0.17±0.10 0.62±0.18 0.00±0.00 0.19±0.08 0.00±0.00 0.23±0.17 0.00±0.00 0.00±0.02
Base 7 60.15±6.92 0.00±0.00 0.28±0.15 0.52±0.22 0.01±0.03 0.42±0.11 0.00±0.00 0.14±0.10 0.00±0.00 0.00±0.00

	INTRODUCTION
	Background and Related Work
	Properties of DNNs
	Scene Graphs
	Relational Specifications
	Runtime Enforcement & Informed Machine Learning

	APPROACH
	Overview
	Property Label Generation
	Abstract Inputs
	Evaluate Properties
	Data augmentation
	Check Consistency

	Training for Specification Conformance
	Main Masked Loss
	Property Loss

	Lagrangian Optimization
	Limitations
	Implementation

	Controlled Experiment
	Dataset
	AV Navigation DNN
	Properties
	Experimental Design
	Metrics
	RQ1-Training towards property conformance
	Setup specific to experiment
	Results

	RQ2-Training-time efficiency with multiple properties
	Efficiency in Terms of Training Time
	Cost-effectiveness of Training Longer

	RQ3-Fine-tuning towards property conformance
	Setup specific to experiment
	Results

	Threats to Validity of Findings

	Case study in Simulation
	Target Systems and Execution Environment
	Properties
	Dataset
	TCP Application
	Results
	Threats to Validity of Case Study Findings

	CONCLUSION
	ACKNOWLEDGMENTS
	References
	Appendix
	Controlled Experiment Dataset
	Case Study Details
	Interfuser controller approximation
	Data augmentation
	Training Hyperparameters and Hardware
	Extended tables

