
Closing the Gap between Sensor Inputs and Driving
Properties: A Scene Graph Generator for CARLA

Trey Woodlief∗, Felipe Toledo∗, Sebastian Elbaum∗, and Matthew B. Dwyer∗
∗Department of Computer Science

University of Virginia, 85 Engineer’s Way, Charlottesville, Virginia 22904
Email: {adw8dm, ft8bn, selbaum, matthewbdwyer}@virginia.edu

Abstract—The software engineering community has increas-
ingly taken up the task of assuring safety in autonomous
driving systems by applying software engineering principles to
create techniques to develop, validate, and verify these systems.
However, developing and analyzing these techniques requires
extensive sensor datasets and execution infrastructure with the
relevant features and known semantics for the task at hand.
While the community has invested substantial effort in gathering
and cultivating large-scale datasets and developing simulation
infrastructure with varying features, semantic understanding of
this data has remained out of reach, relying on limited, manually-
crafted datasets or bespoke simulation environments to ensure
the desired semantics are met.

To address this, we developed a plugin for the widely-used
autonomous driving simulator CARLA called CARLASGG, that
extracts relevant ground-truth spatial and semantic information
from the simulator state at runtime in the form of scene graphs,
enabling online and post-hoc automatic reasoning about the
semantics of the scenario and associated sensor data. The tool
has been successfully deployed in multiple previous software engi-
neering approach evaluations which we describe to demonstrate
the utility of the tool. The tool enables the client to adjust the pre-
cision of the semantic information captured in the scene graph to
suit client application needs. We provide a detailed description of
the tool’s design, capabilities, and configurations, with additional
documentation available accompanying the tool’s online source:
https://github.com/less-lab-uva/carla scene graphs.

Index Terms—autonomous systems, scene graphs, sensor ab-
stractions, specifications

I. INTRODUCTION

Software engineering (SE) for autonomous driving systems
(ADS) is a burgeoning field of research as the community
aims to develop rich and principled SE methodologies to
improve the development [1], validation [2], and verifica-
tion [3] of these systems. In order to develop and study
these methodologies, researchers and practitioners must build
custom datasets [4]–[6] or simulation environments [7]–[9]
in order to obtain units of analysis with known semantics to
serve as the basis of their evaluation. For example, validating
an automated emergency braking system’s (AEBS) ability to
detect and avoid pedestrians requires sensor inputs with known
semantics affirming the presence and location of a pedestrian;
such semantic information is not present in raw sensor data.

Developing such artifacts comes at great expense, limiting
their breadth and thus limiting the study’s generality. Prior
work has identified scene graphs (SGs), graphs that represent
entities as nodes and spatial and semantic relationships as

Fig. 1. An image from the CARLA simulator (top) with the corresponding
scene graph (bottom) representing its high-level semantics automatically
extracted by our tool, CARLASGG. Best viewed on a screen.

edges, as a rich abstraction over which to reason about the
ADS-relevant semantics of a scene and accompanying sensor
data [10]–[12]. To this end, we developed a first-of-its-kind
tool, CARLASGG1, a scene graph generator (SGG) plug-
in for the widely-used CARLA ADS simulator [7] which
generates SGs representing the simulator state, extracting the
critical spatial and semantic information; this enables client
applications to perform in-situ and post-hoc reasoning about
the semantics of the scenario observed during simulation.

CARLASGG2 has two primary usage modes: online se-
mantic monitoring and offline semantic data labeling. In the
online paradigm, the client application can use the semantic
information captured by the SG to identify critical scenarios
to invoke business logic for their technique and study. This
allows for creation and evaluation of, e.g., runtime monitoring
frameworks, online fault-localization techniques, and failure-
prediction techniques. In the offline paradigm, the SGG can
be paired with additional data collection to store sensor and/or

1Tool & video: github.com/less-lab-uva/carla scene graphs [Archive]
2This work was supported by the National Science Foundation through

grants #2129824 and #2312487, the U.S. Army Research Office under grant
W911NF-24-1-0089, and Lockheed Martin Advanced Technology Labs.

https://github.com/less-lab-uva/carla_scene_graphs
https://github.com/less-lab-uva/carla_scene_graphs
https://archive.softwareheritage.org/browse/directory/46a2e0ef6414a265afc327bc622fb8d7b0de7eb6/?origin_url=https://github.com/less-lab-uva/carla_scene_graphs


system trace information paired with the semantic information
captured by the SG to form a rich dataset with known
semantics. This enables generating sensor datasets that are
searchable by their semantics with potential applications in-
cluding, e.g., test selection, test adequacy metrics, and training
and evaluating machine-learned components. One key insight
is that the SG enables extracting semantic information at a
level needed to reason about ADS requirements; Section V
discusses the successful utilization of CARLASGG for a run-
time monitor [12] in the online paradigm and a test adequacy
tool [11] in the offline paradigm, with both uses focused on
reasoning about ADS requirements.

II. RELATED WORK

We review approaches to address the lack of ADS datasets
with known semantics and provide background on SGs.

A. Other approaches to obtain semantically labeled data
Online semantic monitoring. Designing or identifying

relevant scenarios and developing methods to evaluate the
ADS against such scenarios poses a recurring challenge for
researchers and practitioners. One of CARLA’s strengths lies
in its inclusion of specific scenarios, from general driving
tasks [13] to stressful edge-cases [14]. These scenarios
are ready-made units for analysis, but they are limited in
scope, comprising only 47 distinct scenarios [14]. To develop
arbitrary scenarios, recent work has proposed the SCENIC
language that allows the end user to program a suite of
scenarios to run in simulation [15]. Although these works
provide the community simulations with known scenario-level
semantics and enable reasoning about inter-scenario semantics,
they lack more fine-grained information to reason about the
scenario semantics at each frame. CARLASGG fills this gap,
instrumenting the simulation to extract semantic information
per-frame, enabling reasoning over intra-scenario semantics.

Offline semantic data labelling. Designing, training, val-
idation, and verification of end-to-end ADS systems and
individual ADS components often leverage datasets of ADS
sensor data where each sensor input is paired with the ground-
truth label for the relevant task. This has led to considerable
effort to develop substantial and widely used datasets [4]–
[6]. However, these datasets have three main limitations. First,
they contain disparate sensor modalities and labeling based on
their diverse goals, limiting the data available for novel tasks.
Second, while expansive, they contain a finite amount of data,
and obtaining additional data comes at substantial cost. Finally,
extant labels generally exclude the type of rich, semantic
information required for higher-order SE reasoning tasks, e.g.,
understanding whether a given input lies within the valid input
domain of the system. CARLASGG fills this gap, enabling
the collection of large-scale datasets with configurable sensors
from within the CARLA simulator, pairing each sensor input
with semantically-rich ground-truth labels.

B. Scene Graphs
A scene graph (SG) is a directed graph that encodes the

semantic relationships between objects in a scene. Formally,

SG = (V,E : V 7→ V,Ego ∈ V, kind : V 7→ K, rel : E 7→
R, att : V ∪E 7→ M) where V is the set of nodes representing
the entities in a scene, E is a set of directed edges, Ego is
the distinguished ego node from whose perspective the SG is
created, e.g. the ADS, kind is a function to access the entity
type of a node, rel is a function to get the relation of an
edge, and att is a function to retrieve the attribute values of
a node or edge. A Scene Graph Generator (SGG) maps a set
of sensor inputs, I, to an SG representation, sgg : I 7→ SG.
A wide variety of SGGs have been developed for different
tasks, including visual question and answering, and scene
understanding and reasoning [16]. A widely used benchmark
for SGGs, Visual Genome [17], shows continued improvement
across different techniques toward this task. Nonetheless, this
benchmark, although having a wide variety of images and sce-
narios, lacks images describing driving scenarios. To mitigate
this issue, Malawade et al. [10] presented ROADSCENE2VEC,
an open source tool to extract scene graphs from images of
roadway scenes for use in ADS contexts. However, as shown
in previous studies [11], ROADSCENE2VEC exhibits two failure
modes: 1) it uses a hard-coded road structure of 3 lanes,
heedlessly allocating all entities in the left-portion of the image
to the left lane, etc., which is not a sound representation in
most cases; and 2) it encounters perception failures leading to
inaccurate SGs. To fill this gap, CARLASGG extracts ground
truth SGs using CARLA to both ensure the proper road
structure is captured and that the SG entities are accurately
recorded, allowing the development of downstream tasks.

III. APPROACH

Figure 2 illustrates the usage of our tool to generate SGs
from the CARLA simulation. Throughout this section we will
use client to refer to the program utilizing the CARLA plugin,
CARLASGG, along with CARLA to collect data. The client
instantiates CARLA with the relevant environment and sensor
configurations, and controls the flow of the simulation by, e.g.,
operating the ego vehicle through the environment. At any
point, the client can utilize CARLASGG to generate the scene
graph representing the abstract semantics of the scene at that
instant in time. Further discussion on tool setup, configuration,
and performance are available in the repository. The plugin
operates in three phases; we describe each phase below.

A. Pre-processing

For each simulation, CARLA first loads the static back-
ground environment, including the roadway, buildings, sig-
nage, and scenery. These environments can be vast, with
the largest maps approaching 10,000 hectares. For efficiency,
CARLASGG first performs a pre-processing pass over the
environment, computing an initial SG containing the road
structure and all static entities. The road structure is encoded
as a high-definition map, with its resolution selected by the
client; each node represents a location in the roadbed with
edges describing the semantics of traffic flow at that location.
The remaining static entities are extracted and their spatial
and semantic relationships pre-computed to form the initial



CARLA

Program

SGG
Plugin

setUpWorld() world setUpSGG(world) SGG tick() snapshot SGG.getSG(snapshot) SG...

Pre-process Frame
Generation Abstraction

...ASG

Fig. 2. CARLASGG workflow for generating SGs within the CARLA simulator.

SG. This cached static background SG will allow the tool to
efficiently generate a localized SG at each frame.

B. SG Generation per Frame

At each frame, or at the desired frequency established by the
client, CARLASGG can be invoked to generate the localized
SG representing the semantics of the current environment
(“world snapshot” in CARLA terms). Recall from Section II-B
that a scene graph within the ADS context always contains a
distinguished ego vertex identifying the vehicle from whose
perspective the SG is generated.

When generating the SG, the cached static background SG
is filtered to produce a subgraph retaining only the portion
within some defined geometry, chosen by the client, of the ego
vehicle. This subgraph is then enriched by adding all dynamic
entities annotated with their attributes before computing the
pairwise spatial and semantic relationships between all entities.
The resultant SG contains all static and dynamic entities
relevant to the ego vehicle’s current situation.

C. Abstraction

The SG generated in the previous steps contains many
fine-grained details that may not be relevant for the client’s
particular use case. As illustrated in Figure 3, the SG on the
left contains dozens of nodes representing the road structure
(blue), along with two nodes representing the other entities
in the roadway (magenta), and one node representing the
ego vehicle (orange). While this may be suitable for tasks
involving low-level motion-planning, this information may be
superfluous for higher-order tasks. To this end, CARLASGG
provides the functionality to abstract the SG to create an Ab-
stracted Scene Graph (ASG) that lifts the semantic information
contained in the original SG to a higher-level semantics. As
shown in Figure 3, in the ASG on the right, CARLASGG has
abstracted away the individual nodes representing the roadbed
and replaced them with nodes representing the lanes and roads
while preserving the semantic information that these lanes
oppose each other in the flow of traffic. CARLASGG provides
built-in abstractions to match the level of semantic information
present in ROADSCENE2VEC [10] (shown in Figure 3), as well as
higher-order abstractions to remove the lane and/or relation-
ship information from the graph. Additionally, the abstraction
functions are extensible, and client applications can design
additional abstractions as needed.

Fig. 3. A simulator image (top), its SG (left), and an abstracted SG (right).

TABLE I
COMMON PARAMETERS USED BY CARLASGG. FULL DISCUSSION ON

PARAMETERS AND ABSTRACTIONS AVAILABLE ARE IN THE REPOSITORY

Parameter Choices
Entity classes Mapping from CARLA type; e.g., car, truck,

van, bus, motorcycle
Entity special classes Mapping from CARLA type; e.g., emergency

vehicle
Traffic signal classes Mapping from CARLA type; e.g., stop sign,

traffic light, speed limit
Road Granularity None, Lane, Waypoints

Distance Relationships None, choice of thresholds
Angular Relationships None, choice of thresholds
Entity Relationships None, choice of entity pairs

SG Range Geometry defining the range of the SG

IV. IMPLEMENTATION

CARLASGG is implemented in Python 3.7.10 and built to
interface with CARLA version 0.9.14+ through its Python API
with extensions to support older CARLA versions to 0.9.10
due to differing data availability. The tool is divided into



five files: sgg.py which contains the SGG singleton used
to instantiate and utilize the tool as shown in Figure 2, partic-
ularly the constructor which invokes the pre-processing func-
tion, and the SG generation method; sgg_abstractor.py
which contains helper functions for generating ASGs from
a given SG; actors.py which contains mappings between
the CARLA internal entity names and semantic labels to be
utilized in the SG; viz.py which contains helper methods
for visualizing the SGs, e.g., utilized to render Figure 3; and
utils.py which contains helper functions. CARLASGG is
highly-configurable; Table I provides a high-level overview
of several parameters—an extended discussion on parameters,
their defaults, and predefined abstractions is available online.

V. APPLICATIONS

We have successfully utilized our tool, CARLASGG, to im-
plement and evaluate novel SE methodologies applied to ADS.
Through these studies, we have refined the tool’s infrastructure
and developed a robust engineering pipeline to support its
broad adoption by the community. We now discuss prior uses
of CARLASGG, demonstrating its suitability for purpose.

A. Dataset Analysis for Test Coverage

In S3C [11], CARLASGG was successfully used in the
offline paradigm to generate SGs from CARLA paired with
camera inputs, obtaining spatial semantics that allowed it
to compute datasets’ spatial coverage. By abstracting sensor
inputs into interpretable scene representations, S3C can assess
how well a dataset covers different test specifications, and
discriminate which inputs are more likely to cause failures.
sgg_abstractor.py contains implementations for all ab-
stractions evaluated by S3C.

B. Runtime Monitoring for ADS Requirement Compliance

In SGSM [12], CARLASGG was successfully used in the
online paradigm, generating SGs from CARLA at runtime
while operating different ADSs, enabling the specification and
monitoring of safe driving properties. The study demonstrates
how developers can specify safety properties in a domain-
specific language called SGL and monitor them at runtime
using linear temporal logic over finite traces (LTLf ) automat-
ically evaluated over the SGs. By bridging the gap between
raw sensor data and high-level semantics using SGs extracted
with CARLASGG, SGSM was able to evaluate the behavior
of top performing ADSs from the CARLA leaderboard 1 [13]
against safe driving properties. The results revealed that the
ADSs violated 71% of the properties during at least one test,
highlighting the important role of SGSM in ensuring compli-
ance with critical driving standards and the SG abstraction as
a higher-level interpretation from the sensor inputs.

VI. CONCLUSION

We present CARLASGG, a plugin for the CARLA ADS
simulator that enables extracting spatial and semantic infor-
mation from the simulator in the form of scene graphs. These
scene graphs enable online or post-hoc reasoning about the se-
mantics of the scenes encountered during simulation, including

associating these semantics with gathered sensor data. This has
myriad uses from dataset curation to monitoring for specific
scenarios at runtime. We release the source for CARLASGG
and its online documentation to support further adoption and
usage by the community to continue advancements in software
engineering for ADS.

REFERENCES

[1] J. Garcia, Y. Feng, J. Shen, S. Almanee, Y. Xia, and Q. A. Chen, “A
comprehensive study of autonomous vehicle bugs,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 385–396.

[2] P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing
and validation,” SAE International Journal of Transportation Safety,
vol. 4, no. 1, pp. 15–24, 2016.

[3] N. Rajabli, F. Flammini, R. Nardone, and V. Vittorini, “Software veri-
fication and validation of safe autonomous cars: A systematic literature
review,” IEEE Access, vol. 9, pp. 4797–4819, 2020.

[4] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam,
H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi,
Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov, “Scalability in perception
for autonomous driving: Waymo open dataset,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[5] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal
dataset for autonomous driving,” arXiv preprint arXiv:1903.11027, 2019.

[6] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,
and T. Darrell, “Bdd100k: A diverse driving dataset for heterogeneous
multitask learning,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

[7] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the 1st
Annual Conference on Robot Learning, 2017, pp. 1–16.

[8] P. Maul, M. Mueller, F. Enkler, E. Pigova, T. Fischer, and L. Stam-
atogiannakis, “Beamng.tech technical paper,” https://beamng.tech/
blog/2021-06-21-beamng-tech-whitepaper/bng technical paper.pdf, ac-
cessed: 2024-10-08.

[9] H. Abbas, M. O’Kelly, A. Rodionova, and R. Mangharam, “Safe at
any speed: A simulation-based test harness for autonomous vehicles,”
in Cyber Physical Systems. Design, Modeling, and Evaluation: 7th
International Workshop, CyPhy 2017. Springer, 2019, pp. 94–106.

[10] A. V. Malawade, S.-Y. Yu, B. Hsu, H. Kaeley, A. Karra, and M. A.
Al Faruque, “roadscene2vec: A tool for extracting and embedding road
scene-graphs,” Knowledge-Based Systems, vol. 242, p. 108245, 2022.

[11] T. Woodlief, F. Toledo, S. Elbaum, and M. B. Dwyer, “S3c: Spatial
semantic scene coverage for autonomous vehicles,” in 2024 IEEE/ACM
46th International Conference on Software Engineering (ICSE ’24).
ACM, 2024.

[12] F. Toledo, T. Woodlief, S. Elbaum, and M. B. Dwyer, “Specifying and
monitoring safe driving properties with scene graphs,” in 2024 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2024.

[13] CarlaSimulator, “Carla leaderboard,” https://leaderboard.carla.org/
#leaderboard-10, accessed: 2024-07-19.

[14] ——, “Carla leaderboard 2.0,” https://leaderboard.carla.org/, accessed:
2024-09-09.

[15] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-
Vincentelli, and S. A. Seshia, “Scenic: a language for scenario specifica-
tion and scene generation,” in Proceedings of the 40th ACM SIGPLAN
conference on programming language design and implementation, 2019,
pp. 63–78.

[16] X. Chang, P. Ren, P. Xu, Z. Li, X. Chen, and A. G. Hauptmann, “A
comprehensive survey of scene graphs: Generation and application,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.
1–1, 2021.

[17] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz,
S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma, M. S. Bernstein,
and F.-F. Li, “Visual genome: Connecting language and vision using
crowdsourced dense image annotations,” 2016. [Online]. Available:
https://arxiv.org/abs/1602.07332

https://beamng.tech/blog/2021-06-21-beamng-tech-whitepaper/bng_technical_paper.pdf
https://beamng.tech/blog/2021-06-21-beamng-tech-whitepaper/bng_technical_paper.pdf
https://leaderboard.carla.org/#leaderboard-10
https://leaderboard.carla.org/#leaderboard-10
https://leaderboard.carla.org/
https://arxiv.org/abs/1602.07332

	Introduction
	Related Work
	Other approaches to obtain semantically labeled data
	Scene Graphs

	Approach
	Pre-processing
	SG Generation per Frame
	Abstraction

	Implementation
	Applications
	Dataset Analysis for Test Coverage
	Runtime Monitoring for ADS Requirement Compliance

	Conclusion
	References

