
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Scene Flow Specifications: Encoding andMonitoring Rich
Temporal Safety Properties of Autonomous Systems

To ensure the safety of autonomous systems, it is imperative for them to abide by their safety properties. The
specification of such safety properties is challenging because of the gap between the input sensor space (e.g.,
pixels, point clouds) and the semantic space overwhich safety properties are specified (e.g. people, vehicles, road).
Recent work utilized scene graphs to overcome portions of that gap, enabling the specification and synthesis
of monitors targeting many safe driving properties for autonomous vehicles. However, scene graphs are not
rich enough to express the many driving properties that include temporal elements (i.e., when two vehicles
enter an intersection at the same time, the vehicle on the left shall yield...), fundamentally limiting the types
of specifications that can be monitored. In this work, we characterize the expressiveness required to specify
a large body of driving properties, identify property types that cannot be specified with current approaches,
whichwe name scene flow properties, and construct an enhanced domain-specific language that utilizes symbolic
entities across time to enable the encoding of the rich temporal properties required for autonomous system
safety. In analyzing a set of 114 specifications, we find that our approach can successfully encode 110 (96%)
specifications as compared to 87 (76%) under prior approaches, an improvement of 20 percentage points. We
implement the specifications in the form of a runtime monitoring framework to check the compliance of 3
state-of-the-art autonomous vehicles finding that they violated scene flow properties over 40 times in 30 test
executions, including 34 violations for failing to yield properly at intersections. Empirical results demonstrate
the implementation is suitably efficient for runtime monitoring applications.

CCS Concepts: • Software and its engineering→ Dynamic analysis; Software safety; Specification
languages; •Computer systems organization→ Robotics; • Theory of computation→ Program spec-

ifications.

Additional KeyWords and Phrases: runtime verification, autonomous systems, safety properties, scene graphs

ACMReference Format:

. 2025. Scene Flow Specifications: Encoding andMonitoring Rich Temporal Safety Properties of Autonomous
Systems . In Proceedings of ACM International Conference on the Foundations of Software Engineering (FSE ’25).
ACM, New York, NY, USA, 24 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
The inabilityofautonomoussystemstomeet their safetyspecificationshas led tofield failuresandeven
fatalities [7, 8, 46, 65]. In one high-profile incident, a GMC Cruise autonomous vehicle (AV) collided
with a fire truck responding to an emergency [58]. The company stated the AV “positively identified
the emergency vehicle almost immediately”, but had difficulty estimating the path it would take as it
“was in the oncoming lane of traffic, which it had moved into to bypass the red light” [21]. Here, the
AV failed to meet its safety specification to yield to the emergency vehicle, resulting in a collision.

Current methods for testing and verificationwith respect to safety specifications are inadequate to
build a safety case for autonomous systems due to their inability to scale to the needed scope based on

Author’s Contact Information:

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
FSE ’25, June 23–27, 2025, Trondheim, Norway
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: April 2025.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Trovato et al.

the long-tail distribution of inputs such systems face and their rich requirements.One study estimated
that current AV road-testing techniques would need to drive 11 billion miles to demonstrate human-
level safety in terms of fatality levels [32]. For comparison, all AVs registered in California drove a
combined 9 million miles in 2023 [51]—at that rate, a reliable safety case is over a millennium away.
Runtime verification has emerged as a potential tool to increase safety by monitoring for spec-

ification compliance in the field [47, 48]. In this paper we focus on monitoring for specification
compliance, i.e. detecting when a specification has been violated. This has applications for safety in
several dimensions. First, for the autonomous system itself (ego), the violationmay be recoverable; for
example, if anAV runtime verification system identifies that the vehicle has crossed into the opposing
lane, it can take corrective action. Second, as autonomous systems are increasingly being deployed
in fleets, runtime verification at scale can build a safety assurance case by effectively conducting
large-scale field-testing with respect to the specifications being evaluated at runtime. Third, this
problem setup is extensible—while the original specification of “do not cross into the opposing lane”
may not render a violation until after the vehicle has entered a dangerous situation, a more restricted
version with a safety buffer, e.g. “do not come within 25cm of the opposing lane,” would identify a
violation with sufficient time to react. Finally, if a runtime monitor can identify not only violations
by the ego system but by other systems as well, it can inform the ego system’s actions. For example,
if a monitor that tracks whether a vehicle yields properly identifies another vehicle acting out of
turn, the ego vehicle can take precautionary action.
A robust runtime verification systemmust be able to reason over the complex environments in

which autonomous systems operate and the temporally-rich safety properties that govern their
behavior. No prior runtime verification approach succeeds in both dimensions, typically either
using inadequate abstractions of the environment [4, 5], approximating safety-properties [50, 66],
or both [47, 62]. We further discuss the limitations of prior work in Section 7.
Most closely related to this work is that of Toledo et al. that introduced the Scene Graph Safety

Monitor (SGSM) approach [66] that leveraged scene graphs (SGs) to lift from sensors to the semantic
space over which autonomous systems’ specifications are written. SGs encode relevant entities in
the environment as vertices in the graph, and capture pertinent spatial and semantic relationships
between entities as edges in the graph. SGSM used a domain-specific language to query the graphs
for propositions that could then be used in formulas expressed in linear temporal logic over finite
traces (LTL𝑓) [18] to construct a monitor. However, this two-stage decoupling between the SG query
and the LTL𝑓 formula loses crucial temporal information about the connection between different
entities and their relationships across time. As prior work applied SGSM to express properties of
the driving code of the US state of Virginia [2], we explore this domain for comparison. The core
shortcoming of prior work is that they are limited to describing only scene properties and are unable
to encode and monitor scene flow properties.
Definition:A scene is a single-instant snapshot of the autonomous system’s environment.
Definition:A scene property defines the behavior of the autonomous system (ego) based on its
relations with entities in the scene, without accounting for how the relationships between ego and
those entities change over time.
Definition:A scene flow property extends scene properties and defines the behavior of the au-
tonomous system based on its relationships with entities in the scene and how those relationships
change with the flow of time across scenes; in each scene, behavior can be described by current and
previous relations to current and previous entities.
In Section 4, we introduce SceneFlow, a domain-specific language that enables encoding and

monitoring scene flow properties using symbolic entities. For example, consider § 46.2-816 of the
Virginia driving code that restricts following a vehicle too closely as depicted in the scenes in Figure 1.
The scenes in Figure 1a show a violation of the property with the ego vehicle following the same

, Vol. 1, No. 1, Article . Publication date: April 2025.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Scene Flow Specifications: Encoding andMonitoring Rich Temporal Safety Properties of Autonomous Systems 3

(a) Ego following a van too closely for two time steps (b) Ego performing a lane change to overtake

Fig. 1. Safe driving property: “a motor vehicle shall not follow another vehicle, trailer, or semitrailer more closely
than is reasonable...” [2]. Specified in SceneFlow by the LTL𝑓 formula ¬(tooCloseTo(e) ∧XtooCloseTo(e));
where erefers to the vehicle being followed.Left: property is violated because the same vehicle is being followed

over two time steps.Right: property is not violated; although ego is too close to some vehicle in both time steps,

it is not the same vehicle. Prior approaches [66] could not differentiate between these situations.

van too closely in consecutive time steps. The scenes in Figure 1b also show ego following a vehicle
too closely for two time steps, but it is not the same vehicle, so reporting a violation in this case
would be erroneous. Since scene properties can only reason about relations in the current scene, they
cannot distinguish between these cases; i.e. a vehicle versus the same vehicle—scene flow properties
bridge this gap, enabling reasoning over current and past relationships to differentiate these cases. To
understand the extent to which such distinctions are of practical importance, in Section 3 we studied
all 207 sections of the Virginia driving code [2] and identified that of the 114 sections of the driving
code that are applicable to autonomous systems, 20% require this level of temporal expressiveness.

Since prior work [66] cannot express these important safety properties, we developed SceneFlow,
an approach for specifying andmonitoring temporally-rich safety properties of autonomous systems.
SceneFlow encodes the flow of information through time by leveraging symbolic entities that are
bound to portions of the SG andwhere those bindings persist through time. In Figure 1a, the symbolic
entity e is bound to the van which allows § 46.2-816 to be specified precisely. Moreover, in Figure 1b,
if e is bound to the van in the first image, then it will not match the SUV that is 𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒𝑇𝑜 in the
second image, thereby avoiding the erroneous report of a violation.
To showcase the expressiveness and utility of our framework, we demonstrate its application

by monitoring NHTSA scenarios in the CARLA Leaderboard 2.0 [10]. The leaderboard contains
scenarios definedwith a variety of environments including freeways, urban areas, residential districts,
and rural settings; a variety of weather conditions like daylight, sunset, fog, and night. Of particular
interest, it containsmultiple scenarios based on theNHTSApre-crash scenario typology [1] including
negotiations at traffic intersections, yielding to emergency vehicles, avoiding obstacles in the lane,
and others. In addition to the NHTSA scenarios, we demonstrate our framework’s ability to monitor
three state-of-the-art research prototype autonomous vehicles, finding that they violated scene flow
properties over 40 times in 30 test executions, including 34 violations for failing to yield properly
at intersections. Although we demonstrate the utility of SceneFlowwith respect to autonomous
vehicles as a means to compare directly with prior work, the framework is general and applicable
to many types of autonomous systems consuming complex sensor data that must abide by scene
flow properties; we discuss additional use cases in Section 8.

The primary contributions of this paper are: (1) a substantial study specifying real-world require-
ments for autonomous systems revealing important limitations of prior work; (2) the development
of SceneFlow, a novel specification language that addresses those limitations; (3) the development
of a highly-optimized monitoring approach that yields orders of magnitude reductions in the cost of
monitoring SceneFlow specifications; and (4) an evaluation of state-of-the-art autonomous driving
systems demonstrating the breadth and practical effectiveness of SceneFlowmonitoring.

, Vol. 1, No. 1, Article . Publication date: April 2025.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Trovato et al.

2 Background
In this section we briefly summarize work in the area of SG generation, linear temporal logic, and
the intersection of the two for checking safe driving properties.

2.1 Scene Graph Generation
Scene Graph Generation (SGG) aims at building a graph that encodes the semantic relationships
between objects in a scene, and the interaction of those objects with their surroundings. SGs are
highly demanded for visual understanding and reasoning tasks, leading this computer vision subfield
to gain a lot of traction in recent years [12, 36].

An SGGmaps a set of sensor inputs, 𝐼 , to an SG, 𝑠𝑔𝑔 : 𝐼 ↦→𝑆𝐺 . SGs are directed graphs, with a vertex
set𝑉 that represents the set of entities in a scene, and a set of edges (𝑢,𝑣) ∈𝐸 describing their relation-
ships. Formally,𝐺 = (𝑉 ,𝐸 :𝑉 ↦→𝑉 ,𝑘𝑖𝑛𝑑 :𝑉 ↦→𝐾,𝑟𝑒𝑙 :𝐸 ↦→𝑅,𝑎𝑡𝑡 :𝑉 ∪𝐸 ↦→𝐴), with functions to access the
entity𝑘𝑖𝑛𝑑 of a vertex, the𝑟𝑒𝑙ation type encodedbyanedge, and𝑎𝑡𝑡ribute values of vertices andedges.

The SGGprocess can occur bottom-up or top-down. Bottom-up requires the identification of objects
and their attributes, typically through an object detection network like Yolo [67] or Detectron [71],
followed by the identification of the relationships between the detected objects [17, 31, 40, 75]. Top-
down aims to detect and recognize the objects and their relationships at the same time [38, 39, 41, 72].
SGGs are being used in many different domains, including image generation [30, 61] and image
captioning [27]where having structured semantic information about a scene, representedwith an SG,
can help improve performance. Other applications include Visual Question and Answering (VQA)
where SGs capture the essential information of images, allowing graph-based VQA [73] methods
to outperform traditional ones. Or 3D scene understanding [6, 33], that aims to construct 3D SGs,
incorporating more accurate relationships in 3D space. More specialized SGGs have emerged for
particular domains, such as autonomous vehicles [37, 44, 56], that capture the relevant semantics
of driving scenes, e.g. the number of lanes, types of vehicles, and pedestrians.

2.2 Linear Temporal Logic
Linear Temporal Logic (LTL) [55] is a formal language designed for specifying and verifying the
behavior of systems that evolve over time, e.g. embedded or cyber-physical systems [29, 54, 57]. It
enables the definition of temporal relationships between events or states, using different operators to
capture the progression of time. LTL operates over traces of Boolean values encoding the semantics
of the events or states. The logical operators include:And (∧),Or (∨),Not (¬), among others, while
the temporal operators are: Next (X), Until (U),Always (G), and Eventually (F).

Linear Temporal Logic over Finite traces (LTL𝑓) [18] is an extension of traditional LTL specifically
tailored for tasks that operate over finite time horizons, such as discrete tasks that have a clear start
and endpoint. Its ability to express temporal relationships overfinite traces can encodefinite temporal
events likepassingavehicleorchanging lanes,wherecorrectness is tied to specificsequencesofevents.
Apropertyexpressed inLTL𝑓 canbe transformed intoaDeterministicFiniteAutomaton (DFA) [26, 78],
which efficiently checks whether a finite trace satisfies or violates the property, making it well-suited
for real-world applications in task planning and rule adherence. A DFA starts from a specific initial
state determined by the LTL𝑓 formula and then transitions through states based on the semantics of
the formula. A trace ending in an (non) accepting state is (not) in the language of the LTL𝑓 formula.

2.3 Scene Graph for SafetyMonitoring
Previous work combined SGs and LTL𝑓 into a framework called Scene Graph Safety Monitoring
(SGSM), that enables the specification of driving properties for autonomous vehicles (AVs) [66]. As
LTL𝑓 operates over Boolean traces, SGSM developed a domain-specific language called SGL that

, Vol. 1, No. 1, Article . Publication date: April 2025.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Scene Flow Specifications: Encoding andMonitoring Rich Temporal Safety Properties of Autonomous Systems 5

enabled the definition of atomic propositions (APs) over SGs and evaluated them to update the DFA
state. SGL has three main operations: relSet which retrieves the set of vertices that have a specific
edge relationship from the given set of vertices:

𝑟𝑒𝑙𝑆𝑒𝑡 : (𝑉1 ⊆𝑉 ,𝑟 ∈𝑅) ↦→𝑉2 ⊆𝑉 |𝑉2= {𝑣2 :𝑣1 ∈𝑉1∧(𝑣1,𝑣2) ∈𝐸∧𝑟𝑒𝑙 ((𝑣1,𝑣2))=𝑟 }
its complement relSetRwhich retrieves the set of vertices that have a specific edge relationship to
the given set of vertices:

𝑟𝑒𝑙𝑆𝑒𝑡𝑅 : (𝑉1 ⊆𝑉 ,𝑟 ∈𝑅) ↦→𝑉2 ⊆𝑉 |𝑉2= {𝑣2 :𝑣1 ∈𝑉1∧(𝑣2,𝑣1) ∈𝐸∧𝑟𝑒𝑙 ((𝑣2,𝑣1))=𝑟 }
and filterByAttr which selects a subset of the given vertices that have a given attribute:

𝑓 𝑖𝑙𝑡𝑒𝑟𝐵𝑦𝐴𝑡𝑡𝑟 : (𝑉1 ⊆𝑉 ,𝑚 ∈𝑀,𝑓 :𝑇 ↦→𝑏𝑜𝑜𝑙) ↦→𝑉2 ⊆𝑉
𝑉2= {𝑣 :𝑣 ∈𝑉1∧𝑡𝑦𝑝𝑒 (𝑎𝑡𝑡 (𝑣) [𝑚])=𝑇∧ 𝑓 (𝑎𝑡𝑡 (𝑣) [𝑚])}

In addition to those graph query operations, SGSM includes numeric comparison operators,
Boolean logic, and set manipulation used to convert from vertex sets to Booleans.

SGSM and SceneFlow utilize SGs to describe the autonomous system’s environment in a manner
to enable reasoning about its compliance with safety properties. Thus, both techniques require that
the SGG can identify, with sufficient accuracy and precision, relevant entities and relationships
utilized within the regulations and, for SceneFlow, can track these entities over time.

3 Expressivenes Required to Encode the Driving Code
The safety properties governing modern autonomous systems are rich and varied. In this section
we perform a study to provide a characterization of such properties and identify expressiveness gaps.
Despite SGSM’s expressiveness to specify a wide variety of driving properties, as they showcase in
their work, there are other properties that cannot be precisely specified but are instead approximated.
Given that SGSMwas studied by prior work in the context of its ability to express the driving code
of the US state of Virginia, we follow their lead and use the Virginia driving code as the basis of
analysis in this work. Let us examine one such case where SGSM cannot precisely express the desired
property and instead must rely on an approximation. § 46.2-816 from the Virginia driving code states
“a motor vehicle shall not follow another vehicle, trailer, or semitrailer more closely than is reasonable...”
Following the SGSM paradigm, we state this property relative to the ego vehicle, i.e. as a property
for the AV. This property can be over approximated by specifying that ego can never be closer than
is reasonable1, i.e. G(¬tooClose) where tooClose is an AP defined by a graph query that identifies
if ego has a “too close” relation with any other entities2, i.e. ∥𝑟𝑒𝑙𝑆𝑒𝑡 (𝐸𝑔𝑜,“too close”)∥>0. Here we
assume that the SGG defines a “too close” relation between entities. Driving code § 46.2-816 goes
on to say “... than is reasonable and prudent, having due regard to the speed of both vehicles and the
traffic on, and conditions of, the highway at the time”—the precise semantics of this relation would
need to be formally encoded in the SGG and could, e.g., include a range of distances, account for the
speed of the entities, or adjust for the road conditions.

This approximation is sound in that it identifies all violations, but it is incomplete and leads tomany
false positives—there aremany potential situations inwhich ego is temporarily closer to another vehi-
cle than is reasonable, but does not do so over a period of time to be considered following. Attempts to
increase the precision by approximating a temporal definition of following are futile; if “following” is
defined as two time steps in a row, i.e.G(¬(tooClose∧XtooClose)), then this introduces a new formof
imprecision due to SGSM’s inability to reason aboutwhich entities are involved in theAPs. Consider a
situationwhere the egovehicle is close behind a car in one lane, and then changes lanes and is too close
behind a different vehicle in the other lane, shown in Figure 1bwith corresponding SGs in Figure 2. In

1This is explored in𝜓4 and𝜓5 in the original work on SGSM [66].
2In practice, this should also filter by entity type so as to check that ego is not “too close” to vehicles, trailers, or semitrailers
specifically as described in the driving code. This is supported, but is omitted in the running example for brevity.

, Vol. 1, No. 1, Article . Publication date: April 2025.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Trovato et al.

Van 1EgoCar 1

Lane 1Lane 2

Road

isIn

too close

isInisIn

isIn
isIn

(a) SG for Fig. 1b at 𝑡 =1: 𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒 =
∥𝑟𝑒𝑙𝑆𝑒𝑡 (𝐸𝑔𝑜,“too close”) ∥ >0=
∥ {Van 1} ∥ >0=1>0=𝑡𝑟𝑢𝑒
DFA transitions from S1 to S2

Van 1EgoCar 1

Lane 1Lane 2

Road

isIn

too close

isIn
isIn

isIn
isIn

(b) SG for Fig. 1b at 𝑡 =2: 𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒 =
∥𝑟𝑒𝑙𝑆𝑒𝑡 (𝐸𝑔𝑜,“too close”) ∥ >0=
∥ {Car 1} ∥ >0=1>0=𝑡𝑟𝑢𝑒
DFA transitions from S2 to S3 and rejects

S1start

S2

S3

𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒¬𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒

𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒

¬𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒

𝑇𝑟𝑢𝑒

(c) DFA for LTL𝑓 of

G(¬(tooClose ∧ XtooClose)) ;
rejects on the sequence of SGs.

Fig. 2. False positive example for § 46.2-816 encoding due to imprecise approximation of “following”.

this case, ego has not followed any one vehicle, yet the SGSM scene property encoding cannot identify
this. In thefirst timestep, shownon the left inFigure2a, theAP for𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒 evaluates to true due toego
having the “too close” relationshipwithVan 1. In the second time step, shownon the right in Figure 2b,
the AP for 𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒 evaluates to true due to ego having the “too close” relationship with Car 1. As
demonstrated through theDFAshown inFigure2c, this sequenceof events is rejectedby this encoding;
although ego did not follow any single vehicle, this information is lost in the Boolean evaluations over
the graph as the information aboutwhich vehicle was being followed cannot be propagated through
time. This is a fundamental limitation in the expressiveness of SGSM. Attempts to express such a con-
cept in SGSMwouldbe incomplete and inefficient; doing sowould require enumerating separate speci-
fications for eachpossible entity, e.g. an instantiation for 𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒𝐶𝑎𝑟1 andanother for 𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒𝑉𝑎𝑛1.
This is either incomplete by limiting the enumeration belowwhat is encountered at runtime, or ineffi-
cient by tracking superfluous specifications.We now examine the impact of this limitation in practice.

Table 1. Necessity of scene flow information in expressing the Virginia driving code [2].

✗= No Support,G#= Partial Support, ✓= Full Support.Bold = requires scene flow

For
AV?

Express in
SGSM [66]?

Requires
flow? # Sections within § 46.2

✗ — — 93 800, 800.2, 800.3, 801, 808, 808.2, 808.3, 809, 809.1, 810, 810.1, 811, 812, 813, 815,
816.1, 817, 818.2, 819, 819.1, 819.2, 819.3, 819.3:1, 819.4, 819.5, 819.6, 819.7, 819.8,
819.9, 819.10, 830.1, 830.2, 831, 832, 833.01, 840, 844, 853, 855, 860, 861, 866, 867,
868, 869, 872, 874.1, 876, 878, 878.3, 879, 880, 882, 882.1, 883, 891, 895, 896, 897, 898,
899, 900, 901, 902.1, 904.1, 906.1, 908, 911, 913, 915, 916, 916.2, 917.1, 917.2, 918, 919,
919.1, 920.1, 920.2, 921.1, 931, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944,
944.1

✓

✓ — 87 800.1, 802, 803.1, 805, 806, 807, 808.1, 814, 818, 818.1, 825, 827, 828, 828.1, 828.2, 830,
834, 835, 836, 838, 841, 845, 848, 849, 850, 851, 857, 859, 861.1, 862, 870, 871, 873,
873.1, 873.2, 874, 875, 877, 878.1, 878.2, 878.2:1, 881, 884, 885, 886, 887, 888, 889, 890,
892, 893, 894, 902, 903, 904, 906, 908.1, 908.1:1, 908.2, 908.3, 909, 910, 911.1, 912, 914,
915.1, 915.2, 916.1, 916.3, 917, 922, 923, 925, 926, 927, 928, 929, 930, 932, 932.1, 933,
822, 824, 826, 863, 846, 847

G# ✓ 8 803, 804, 821, 833, 905, 907, 920, 924

✗ ✓ 15 816, 820, 823, 829, 833.1, 837, 839, 842, 842.1, 843, 854, 856, 858, 865, 921

✗ ✗ 4 852, 864, 865.1, 868.1

We performed a full analysis of Chapter 8, “Regulation of Traffic”, of the Virginia driving code
to categorize which sections are applicable to autonomous systems (AVs), which can be expressed

, Vol. 1, No. 1, Article . Publication date: April 2025.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Scene Flow Specifications: Encoding andMonitoring Rich Temporal Safety Properties of Autonomous Systems 7

by SGSM (scene properties) and which ones, like the examples in Sections 1 and 2.3, require more
expressiveness to capture relationships with specific entities over time (scene flow properties).
As illustrated in Table 1, of the 207 numbered sections in the code, 114 (55%) are applicable for

typical autonomous systems3. Of these 114, 87 (76%) can be fully expressed by SGSM, while an addi-
tional 8 (7%) are partially4 expressible by SGSM.We find that for 23 (20%) of the properties, SGSM is
specifically limited due to its lack of support for flow properties, i.e. its inability to track relationships
with specific entities over time; an approach extending SGSMwith scene flow information would
support 110 of the 114 properties (96%). The remaining 4 properties are inexpressible due to the
imprecise language of the specification.While it is important for the driving code to contain catch-all
sections such as § 46.2-864 that prohibits “reckless driving” defined as “[operating] any motor vehicle
at a speed or in a manner so as to endanger the life, limb, or property of any person” [2], such provisions
cannot be readily formalized regardless of the expressibility of the logic.

Qualitatively, we find that many critical safety properties in the driving code are not expressible by
prior approaches. Chapter 8 Article 2 “Right-of-Way” contains 12 sections that describe under what
situations different vehicles have the right-of-way when driving. Of these, five cannot be encoded
under prior approaches because they require scene flow information in order to reason through time
aboutwho retains the right-of-way. For example, § 46.2-820 requires that “when two vehicles approach
... an intersection at approximately the same time, the driver of the vehicle on the left shall yield the
right-of-way to the vehicle on the right” [2] while following sections discuss right-of-way for further
scenarios, including yielding to emergency vehicles. The right-of-way established by the driving
code allows all road users to proceed in a safe and orderly fashion by relieving the individual vehicles
of the need to negotiate passage through shared spaces. However, this shared understanding of the
right-of-way is only safe if all actors follow the procedure. Prior failures of autonomous systems to
abide by the established right-of-way have led to serious accidents [58].

Limitations of expressiveness of prior approaches.We find that while prior approaches
are capable of expressing substantial portions (76%) of the driving code examined, a limited
(20%) but safety-critical, and in practice common, set of properties remain out of reach of
prior approaches due to their inability to express scene flow properties that require reasoning
about interactions with other entities and the environment through time.

4 Approach
Prior approaches are limited by their inability to express scene flow properties that require reason-
ing about the relationship between specific entities through the flow of time. We now introduce
SceneFlow, a novel approach for expressing such properties over SGs by using a domain-specific
language utilizing symbolic entities that allow for atomic propositions in LTL𝑓 to reason about the
same entity through time.Wefirst describe the syntax and semantics of the domain-specific language,
and then describe how the language is utilized to encode the relevant properties, and how these can be
leveraged in a monitoring framework as shown in Figure 3 to identify property violations at runtime.

4.1 Language Syntax and Basic Semantics
In this section we describe the syntax of SceneFlow and describe its basic semantics. The following
sections further elaborate the semantics with respect to symbolic entities.

3The remaining 93 sections handle bureaucratic administration of the code or do not apply to typical autonomous systems,
e.g. § 46.2-812 states “No person shall drive ... for more than thirteen hours in any period of twenty-four hours”.
4Partial indicating that the numbered section contains multiple clauses, some of which are expressible.

, Vol. 1, No. 1, Article . Publication date: April 2025.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Trovato et al.

An expression in SceneFlow is an LTL𝑓 formula in which the propositions are symbolic graph
queries. Building from the definition of an LTL𝑓 formula [18], an expression 𝜙 in SceneFlow is:

𝜙F𝐴𝑃 | (¬𝜙) | (𝜙1∧𝜙2) | (𝜙1∨𝜙2) | (𝜙1 =⇒ 𝜙2) | (G𝜙) | (F𝜙) | (X𝜙) | (𝜙1U𝜙2)
Where G,F ,X, andU are the standard LTL𝑓 operators discussed in Section 2.2. In this expression,
𝐴𝑃 is a symbolic graph query,𝐴𝑃 :𝑆𝐺 ↦→𝐵𝑜𝑜𝑙𝑒𝑎𝑛, built up out of Boolean expressions (𝐵) in turn
built up out of expressions defining sets of SG vertices (𝑆):

𝐴𝑃 F (¬𝐵) | (𝐵1∧𝐵2) | (𝐵1∨𝐵2) | (𝐵1 =⇒ 𝐵2) | (𝐵1⊕𝐵2)
𝐵 F def (e) | (∥𝑆 ∥>𝑁) | (∥𝑆 ∥<𝑁) | (∥𝑆 ∥ ≥𝑁) | (∥𝑆 ∥ ≤𝑁) | (∥𝑆 ∥=𝑁) | false | 𝑡𝑟𝑢𝑒
𝑆 F {e} | 𝑠𝑔.𝑉 | (𝑆1∪𝑆2) | (𝑆1∩𝑆2) | (𝑆1\𝑆2) | (𝑆1△𝑆2) | 𝑟𝑒𝑙𝑆𝑒𝑡 (𝑆,𝑟) |

𝑟𝑒𝑙𝑆𝑒𝑡𝑅(𝑆,𝑟) |filterByAttr (𝑆,𝑚,𝑓) | 𝑖𝑡𝑒 (𝐴𝑃,𝑆1,𝑆2)
Where ¬,∧,∨,=⇒ , and ⊕ are the logic not, and, or, implication, and exclusive or operators respec-
tively; ∥·∥,∪,∩,\, and △ are the set size, union, intersection, difference, and symmetric difference
operators respectively; >,<,≥,≤, and = are the greater than, less than, greater than or equal, less
than or equal, and equality test operators; 𝑁 ∈N; 𝑖𝑡𝑒 is the if-then-else operator that evaluates to
its second argument if its first argument is true, otherwise it evaluates to its third argument. Here
e is an an identifier denoting a symbolic entity which will be described further in Section 4.2. In the
semantics, 𝑆 is a set of vertices in the SG and 𝑠𝑔.𝑉 is the set of all vertices in the graph (𝑆 ⊆𝑠𝑔.𝑉). We
can use this syntax to define a standard expression that is common to many SceneFlow expressions:
the special set 𝐸𝑔𝑜 =filterByAttr (𝑠𝑔.𝑉 ,𝑛𝑎𝑚𝑒,“𝑒𝑔𝑜”), which is the set containing the lone vertex for
referring to the ego vehicle in the SG.

Example:Note that SceneFlow subsumes the expressive power of the previous language utilized
by SGSM [66], i.e. any expression in SceneFlow that does not utilize symbolic entities could be
expressed in SGSM. For example, the expression of the example given in Section 2.3 is valid in both
SGSM and SceneFlow and can be fully stated as:

G(¬((∥𝑟𝑒𝑙𝑆𝑒𝑡 (𝐸𝑔𝑜,“too close”)∥>0))∧(X(∥𝑟𝑒𝑙𝑆𝑒𝑡 (𝐸𝑔𝑜,“too close”)∥>0)))

4.2 Symbolic Entities
Motivating Example:A simple natural language description of the previous property would be “it
must never happen that in two consecutive time steps the set of entities that ego is too close is non-empty”.
As discussed, this does not match the original semantics of the driving code § 46.2-816. An improved
but still simple natural language description for the driving code would be “it must never happen that
in two consecutive time steps, ego is too close to some vehicle, E”. Examining the LTL𝑓 from before, this
could be written asG(¬(tooCloseToE∧XtooCloseToE)). In order to express tooCloseToE in SGSM, the
entity Emust be described by a query over the graph. However, any single query over the graph is
insufficient as the correct semantics of this property are for it to apply over all such E appearing over
the trace of graphs. This is the problem that SceneFlow addresses through symbolic entities.

A symbolic entity enables the expression of an existential quantifier that refers to the same logical
entity across time. Informally, using quantifiers over the possible vehicles, we could reformulate the
previous as ∀e:G(¬(tooCloseTo(e)∧XtooCloseTo(e))), where tooCloseTo(e) is a function over the
quantified variable, ensuring that it refers to the same entity through time and checks all such entities.

4.2.1 State Semantics. If e𝑖 are the symbolic entities referenced in a SceneFlow specification 𝜙 ,
then the semantics for that formula is: ∀e1 ∈ 𝑠𝑔.𝑉 ∪{⊥} : ... :∀e𝑛 ∈ 𝑠𝑔.𝑉 ∪{⊥} :𝜙 , where the e𝑖 can
be bound to any single vertex or to a distinguished⊥ value which denotes that e𝑖 is undefined.
In this section we first consider such a formula evaluated in a single state of a trace where it has

access to 𝑠𝑔.𝑉 for the SG describing that state. From the grammar, {e}may appear anywhere that

, Vol. 1, No. 1, Article . Publication date: April 2025.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Scene Flow Specifications: Encoding andMonitoring Rich Temporal Safety Properties of Autonomous Systems 9

Safety
Property

DFA =S1

Sensor SGG SG

Bind Eval AP +
Update

DFA =S1

DFA =S1
DFA =S1

...

DFA Database

Violating
Trap State

Offline Online

Yes

No

Fig. 3. Monitoring framework for leveraging SceneFlow

a set expression 𝑆 may appear. The semantics of set operations, 𝑆 , are defined using the standard set
operators if {e} is a singleton vertex set. If e=⊥ for any operand of a set operation, however, then the
result of the expression is⊥. The exception being the 𝑖𝑡𝑒 functionwhich uses the optimistic evaluation
scheme discussed below for atomic propositions. Similarly a Boolean expression, 𝐵, that involves an
operand of⊥ value evaluates to⊥. The exception to this being the function def ≡𝜆𝑥 :𝑥 ≠⊥, used to
determinewhether a symbolic entity is defined.Atomic propositions,𝐴𝑃 , are evaluated optimistically
relative to ⊥; i.e. if an operand having a ⊥ value does not impact the truth value of the𝐴𝑃 then it
yields that truth value, otherwise it yields⊥. For example, false∧⊥= false and false =⇒⊥=𝑡𝑟𝑢𝑒 .

4.2.2 Trace Semantics. SceneFlow specifications are defined over sequences of states each defined
by an SG. Within each state there is a well-defined value for 𝑠𝑔.𝑉 , but different states may have
different vertex sets with some entities appearing later in the trace and others leaving the scene as
the trace progresses. Let 𝑠𝑔[𝑖] be the SG from the 𝑖th step in the trace. The semantics of a formula
with symbolic entites over a trace with varying SGs is defined as:

∀𝑖1 ∈ [0,𝑚] : ... :∀𝑖𝑛 ∈ [0,𝑚] :∀e1 ∈𝑠𝑔[𝑖1] .𝑉 ∪{⊥} : ... :∀e𝑛 ∈𝑠𝑔[𝑖𝑛] .𝑉 ∪{⊥} :𝜙 (1)

where𝑚 is the trace length. This definition allows variables to be defined to take on any possible
vertex across the SGs in the trace.

The SGG process must respect the following semantics with respect to 𝑠𝑔.𝑉 and the intermediate
𝑠𝑔[𝑖]. Any entity that is contained in the SGat time 𝑖must also be present in all subsequent graphs; and
must refer to the same logical entity through time, ∀𝑖 ∈ [1,𝑚] :𝑠𝑔[𝑖−1] .𝑉 ⊆𝑠𝑔[𝑖] .𝑉 . This is because if a
symbolic entity e is bound to some vertex e∈𝑠𝑔[𝑖] .𝑉 , then emust also appear in all subsequent SGs
so that the information about e is “remembered” through time even if it leaves the observed scene.
As discussed in Section 2.1, the SGG leverages its sensor inputs to identify entities and their

physical and semantic relationships in the environment. Let 𝑠𝑒𝑛𝑠𝑒𝑑 [𝑖] be the SG generated from
the sensor input 𝐼𝑖 at time 𝑖 . There may be entities in 𝑠𝑔[𝑖−1] .𝑉 that are not present in 𝑠𝑒𝑛𝑠𝑒𝑑 [𝑖] .𝑉 ,
i.e. there exist unseen entities,𝑢𝑛𝑠𝑒𝑒𝑛=𝑠𝑔[𝑖−1] .𝑉 \𝑠𝑒𝑛𝑠𝑒𝑑 [𝑖] .𝑉 , due to, e.g., occlusions, perception
failure, or because the entity left the scene. In order to meet the prior invariant, 𝑠𝑔[𝑖] .𝑉 must contain
𝑠𝑔[𝑖−1] .𝑉 ∪𝑠𝑒𝑛𝑠𝑒𝑑 [𝑖] .𝑉 and ensure that the logical entities are aligned to the same vertex. However,
simply adding 𝑢𝑛𝑠𝑒𝑒𝑛 to 𝑠𝑔[𝑖] is insufficient—𝑠𝑔[𝑖] must also preserve the relevant relationships
of vertices in 𝑢𝑛𝑠𝑒𝑒𝑛 from 𝑠𝑔[𝑖 − 1]. Any implementation of SceneFlow must determine what
relationships and attributes of unseen entities should persist with the entity; i.e., what must be
observed to be known, andwhat can be assumed based on prior information.We refer to relationships
and attributes that will persist as static and those that will not as dynamic. For example, if the SG
contains entities representing the lanes in the road, then relationships defining which lane can
merge into which other lane can likely be assumed static as the road structure will not change
even if it is not observed. However, the attribute of a traffic light determining its color is certainly
dynamic and should not be assumed based on prior information. Thus, 𝑠𝑔[𝑖] .𝑉 must contain all
entities in𝑢𝑛𝑠𝑒𝑒𝑛, retaining their static attributes, and additionally 𝑠𝑔[𝑖] .𝐸 must contain all edges
{(𝑢,𝑣) ∈𝑠𝑔[𝑖−1] .𝐸 :𝑢 ∈𝑢𝑛𝑠𝑒𝑒𝑛∨𝑣 ∈𝑢𝑛𝑠𝑒𝑒𝑛}, retaining their static relationships.

, Vol. 1, No. 1, Article . Publication date: April 2025.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Trovato et al.

Evaluation of an LTL𝑓 formula involves checking a DFA that encodes its temporal structure but
this definition implies that the state structure evolves over time as bindings aremade. Rather than use
a more expressive DFA, like an extended finite state machine with variables and guards, instead we
generate copies of the DFA specialized to the bindings. As shown from the product of the quantifiers
in Equation 1, SceneFlow creates a DFA for all possible bindings of all possible entities at every point
in time. This allows us to directly leverage the LTL𝑓 DFA formulation. In the worst case, there are
Π𝑖∈[0,𝑚] (∥𝑠𝑔[𝑖] ∥+1)𝑛 such DFA for a property involving 𝑛 symbolic entities over a trace of length
𝑚, but as we will discuss in Section 5 the vast majority of these can quickly be determined to have
reached an accepting trap state at which point they can be ignored.

In practice rather than requiring full information about the trace, these semantics can be realized
at each time step, enabling runtime monitoring. As shown in Figure 3, the Bind step generates DFA
copies for all possible bindings of the symbolic entities in 𝜙 . Each DFA copy then evaluates the
relevant APs over the SG to update its state. A SceneFlow formula 𝜙 holds if none of the DFA copies
generated by this process reach a non-accepting trap state—states from which it is impossible to
subsequently satisfy 𝜙 . All remaining DFAs from this process are retained to continue evaluation
in the next time step, shown in the DFA database in Figure 3.
There are several points to observe about the role of⊥ in the evaluation of LTL𝑓 DFA. First, the

evaluation of atomic propositions drives transitions through the LTL𝑓 DFA. If an 𝐴𝑃 labelling a
transition evaluates to⊥ then the transition is not enabled. Second, it is possible that all transitions for
a DFA are either⊥ or false and thus there are no valid state transitions. In this case, that DFA copy is
discarded—the associated bindings, or lack of bindings, have no defined semantics with respect to the
satisfaction of the expression. Finally, it is possible that a trace terminates with undefined symbolic
entities; any DFA that has not yet reached a trap state when the trace terminates are discarded as
they have not, and cannot, reach the violation condition.

Example: Let us examine how the semantics of symbolic entities allow us to express the example
of following too closely described before. By leveraging a symbolic entity e, the tooCloseTo(e)5
function could be expressed as:

𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒𝑇𝑜 (e)= ∥𝑟𝑒𝑙𝑆𝑒𝑡 (𝐸𝑔𝑜,“too close”)∩{e}∥>0
Filling this in for the full expression we have:

¬((∥𝑟𝑒𝑙𝑆𝑒𝑡 (𝐸𝑔𝑜,“too close”)∩{e}∥>0))∧(X(∥𝑟𝑒𝑙𝑆𝑒𝑡 (𝐸𝑔𝑜,“too close”)∩{e}∥>0))

4.2.3 Example Trace. Let us revisit the executionof the example trace shown in Figure 2 in Section 2.3
that demonstrated how the SGSM encoding of the property led to a false-positive violation due to
SGSM’s inability todistinguishbetweenthedifferententities. Figure4showstheSceneFlowencoding
of the same property discussed above. The DFA, shown in Figure 4a, contains 4 states; the evaluation
proceeds for all possible entity bindings at all times. Figure 4b shows the evaluation of each of the pos-
sibleDFA copies as described above. At time 𝑡 =1, there are three possible bindings for e, “Van 1”, “Car
1”, and⊥. The binding e=“Van 1” (ID=1) leads to 𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒𝑇𝑜 (e)= true and advances theDFA to state
S3. The binding e=“Car 1” (ID=2) leads to 𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒𝑇𝑜 (e)= false and advances the DFA to state S2;
since S2 is the accepting trap state, theDFAstops evaluating at this time step since it cannever lead to a
violation. The binding e=⊥ (ID=3) results in aDFAwith no viable transitions and stops executing. At
time 𝑡 =2, three newDFAs are instantiated to evaluate the three potential bindings starting at this time
step. Further, the remaining DFA that was instantiated at time 𝑡 =1, ID=1, continues evaluation; with
the updated SG in time 𝑡 =2, the binding e=“Car 1” now leads to 𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒𝑇𝑜 (e)= false and causes the
DFA to transition from state S3 to the accepting trap state, S2. As demonstrated through all possible
instantiations of the DFA, no instantiation leads to a violation, i.e. noDFA reaches state S4. If the trace
ends at 𝑡 =2, then𝜙 accepts; however, if the trace were to continue, DFA 4would continue to be active
5When describing a Boolean function over symbolic entities, by convention we omit { ·} in the function call for brevity.

, Vol. 1, No. 1, Article . Publication date: April 2025.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Scene Flow Specifications: Encoding andMonitoring Rich Temporal Safety Properties of Autonomous Systems 11

S1start

S3

S2 S4

¬𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒𝑇𝑜 (e)

𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒𝑇𝑜 (e)

¬𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒𝑇𝑜 (e)
𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒𝑇𝑜 (e)

true true

(a) DFA for LTL𝑓 of

¬(tooCloseTo(e)∧XtooCloseTo(e))

𝑡 DFA ID Entities 𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒𝑇𝑜 (e) State Violation
1 1 e=“Van 1” true S3 No
1 2 e=“Car 1” false S2 No
1 3 e=⊥ ⊥ — No
2 1 e=“Van 1” false S2 No
2 4 e=“Van 1” false S2 No
2 5 e=“Car 1” true S3 No
2 6 e=⊥ ⊥ — No

(b) Evaluation of all symbolic entities over time

Fig. 4. DFA and evaluation of the SceneFlowSpec expression of the example from Figure 2.

and could identify violations later in the trace along with the additional DFAs that would be created.
This demonstrates how the SceneFlow encoding of the property addresses the limitation of SGSM.

A single expressionmay containmultiple symbolic entities. For example,𝜙3, further studied in Sec-
tion 6 to encode the property from § 46.2-821 that the vehicle that arrives at the stop-sign-controlled
intersection second must yield to the vehicle that arrived first. This is expressed as:
(((𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e1,j))∧¬(𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e2,j))∧ℎ𝑎𝑠𝑆𝑡𝑜𝑝 (e2))∧X((𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e1,j)∧𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e2,j))))

=⇒X(X(((𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e2,j)∧¬𝑓 𝑢𝑙𝑙𝑦𝐼𝑛𝐼𝑛𝑡𝑒𝑟 (e2,j))U¬(𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e1,j)))))
The semantics of these three entities are: e1, the vehicle that arrived first at the intersection and has
the right-of-way; e2, the vehicle that arrived second at the intersection, is governed by a stop sign,
and thus must yield to e1;j, the intersection where these vehicles meet—it is important not only
that the vehicles are at an intersection, they must both be at the same intersection. In the expression,
the 𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e,j) function represents a graph query that checks if vehicle e is at intersectionj, the
ℎ𝑎𝑠𝑆𝑡𝑜𝑝𝑆𝑖𝑔𝑛(e) function represents a graph query that checks if a vehicle e is governed by a stop
sign, and the fullyInInter (e,j) function represents a graph query that checks if vehicle e is fully in
intersectionj. In this way, the above can be understood as “if e1 is at an intersectionjand e2 is not
at intersectionj, then in the next time step e1 is still at intersectionjand e2 is newly at intersection
jand is governed by a stop sign, then starting in the next time step, e2 must wait to enter, i.e. be
fully in, intersectionjuntil e1 is no longer at intersectionj.”

4.3 Property Encoding Patterns
Developers are better able to reason about high-level temporal patterns than the temporal logic ex-
pression of the patterns [16].We developed several adaptations of the Property Specification Patterns
(PSP) [23] to fit the semantics of SceneFlow used to specify properties of the Virginia driving code.

Latching Response ChainsA two stimulus-one response chain in PSP [23] defines a sequence
of two states as a precondition whose occurrence requires a third state – the response – to follow.
In SceneFlow a common two-state stimulus comes in the form (¬𝐵)∧X(𝐵) which defines a latch
that identifies a specific instant in time when 𝐵 becomes true. If 𝐵 is expressed over a set of symbolic
entities, e.g. 𝐵 = 𝑓 (e1, ...,e𝑛), then the check for the transition from ¬𝑓 (e1, ...,e𝑛) to 𝑓 (e1, ...,e𝑛)
between time steps means that the same set of entities will not meet the precondition in future time
steps. This pattern makes it possible to correctly check the postcondition only once for a specific
binding of e1,...,e𝑛 that experienced the precondition as follows:

(¬𝑓 (e1,...,e𝑛))∧X 𝑓 (e1,...,e𝑛)︸ ︷︷ ︸
precondition requires 2 steps

=⇒ XX𝑝𝑜𝑠𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛︸ ︷︷ ︸
begins evaluation at step 3

This pattern is a building block of several variant patterns described below.

, Vol. 1, No. 1, Article . Publication date: April 2025.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Trovato et al.

The Bounded Guarantee PatternOne of the most common use cases for SceneFlow are prop-
erties that provide bounded guarantees about an entity’s behavior. Consider a situation in which
e2 must yield to e1. Yielding properties are defined in two stages for the pre and postconditions. The
first stage expresses what it means for e1 to have the right-of-way (the precondition), and the second
stage expresses what it means for e2 to yield (the postcondition) as follows:

(¬𝑎𝑡𝐻𝑜𝑙𝑑𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(e2))∧X(ℎ𝑎𝑠𝑅𝑖𝑔ℎ𝑡𝑂 𝑓𝑊𝑎𝑦 (e1)∧𝑎𝑡𝐻𝑜𝑙𝑑𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(e2))
=⇒XX(𝑎𝑡𝐻𝑜𝑙𝑑𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(e2)U¬ℎ𝑎𝑠𝑅𝑖𝑔ℎ𝑡𝑂 𝑓𝑊𝑎𝑦 (e1))

The precondition leverages a variant of the latching pattern discussed above to identify when e2
must yield the right-of-way to e1. The postcondition then uses the until operatorU to describe that
e2 must continue to yield to e1 until e1 no longer has the right-of-way.
Table 2 instantiates this pattern to express three driving code properties: 𝜙2,𝜙3, and 𝜙4. Moreover,

variants of bounded guarantee that require certain conditions to be met throughout the duration
of the precondition are used to express two more properties: 𝜙5 and 𝜙6.
Time-Bounded Relationship PatternAnother common property in SceneFlow is the time-

bounded relationship pattern that states that two entities may not continuously be associated by a
given relationship for longer than a certain duration. Consider some function 𝑡𝑖𝑚𝑒𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝑅(e1,e2)
that is true if entity e1 has some relationship, 𝑅, to e2 that must only exist for a bounded period of
time. This property is expressed using a variant of the latching precondition as:
(¬𝑡𝑖𝑚𝑒𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝑅(e1,e2))∧X(𝑡𝑖𝑚𝑒𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝑅(e1,e2)) =⇒X(¬$[𝑁] [𝑡𝑖𝑚𝑒𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝑅(e1,e2)])

Here, 𝑁 ∈Z+, and $[𝑁] [𝐴𝑃] is the discrete metric operator explored in prior work that successively
applies theX operator joined by conjunction, e.g. $[2] [𝐴] =𝐴∧X𝐴 [66]. Table 2 instantiates this
pattern twice to express properties: 𝜙1 and 𝜙8.
The Concurrence PatternA final pattern that expresses that a transition and a property must

happen concurrently. Consider a hypothetical property that says that when an entity exits an in-
tersection, it must exit into the rightmost lane. This would be expressed as:

(𝑖𝑛𝐼𝑛𝑡𝑒𝑟 (e1) U ¬𝑖𝑛𝐼𝑛𝑡𝑒𝑟 (e1)) =⇒ (𝑖𝑛𝐼𝑛𝑡𝑒𝑟 (e1) U (¬𝑖𝑛𝐼𝑛𝑡𝑒𝑟 (e1)∧𝑟𝑖𝑔ℎ𝑡𝑀𝑜𝑠𝑡𝐿𝑎𝑛𝑒 (e1))
Table 2 instantiates this pattern to express property 𝜙7.

4.4 Limitations
Though SceneFlow enables the encoding and specification of a large proportion of safety properties,
including 96% of the relevant Virginia driving code sections per Section 3, there remain limitations
that present avenues for future work. First, real-world requirements contain ambiguity and impreci-
sion. For example, the remaining 4% of the driving code studied cannot be encoded due to broadness
of catch-all provisions on, e.g., reckless driving. Further, other aspects of the driving code require
specific parameter choices to encode, e.g., defining a specific definition of “too close” for § 46.2-816;
although the “too close” relationship is readily represented in an SG, SceneFlow relies on the SGG
to determine whether such a relationship exists. These requirements were developed for human use,
targeting human drivers and human law enforcement; future work may seek to develop AV-specific
requirements or enable systems to make determinations specified in natural language [28]. More
broadly, future work should investigate the impact of imprecise and inaccurate SGGs on monitoring
performance. Another limitation comes from the use of discrete-time LTL𝑓 which uses less precise
timing than richer temporal logics. Consider a property that requires a specific duration; e.g. 𝜙1 and
𝜙8 explored in the study in Section 6.1. LTL𝑓 must approximate any duration based on the framerate
of the system.However, since all sensors and thus SGGs operate in discrete time, SceneFlow does not
introduce a new source of imprecision and the monitor is sound and is precise within the framerate.
As such, future work should focus on methods to increase the framerate to decrease the imprecision.

, Vol. 1, No. 1, Article . Publication date: April 2025.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Scene Flow Specifications: Encoding andMonitoring Rich Temporal Safety Properties of Autonomous Systems 13

5 Implementation
To study the utility of SceneFlow to express properties and synthesize monitors to detect violations,
we developed a Python implementation to study 8 properties in various scenarios. Here we give
technical details about the implementation; Section 6 discusses the results of its successful application.
While SceneFlow is general to many applications, our implementation targets the AV domain

through theCARLA [22] driving simulator,wherewe explore its utility under several driving contexts
to demonstrate its broad applicability. We utilize an SGG that leverages CARLA’s Python API to
generate SGs using ground-truth simulator data; the graphs were generated to match the graph
abstraction used in SGSM [66]. Leveraging the simulator also allows the SGG to consistently identify
the same logical entity through time. In practice, an SGG implemented over sensed data would
need to perform this automatically; this is an area with ongoing research, referred to as “object
reidentification” [3, 68, 74] or “object tracking” [20, 49]. Leveraging ground-truth SGs allows us to
analyze the expressiveness and utility of SceneFlow independently of the SGG component.

At instantiation, the implementation computes theDFA for each property from its LTL𝑓 expression
using the LTLf2DFA Python package [26]. Then, the monitor at each time step: builds the SG from the
current environment using the SGG, abiding by the invariants described in Section 4.2.2; evaluates
all DFA instances using the SG as described next in Section 5.1.2; and, if any DFA reaches a violating
trap state, logs the violation including the binding of the relevant symbolic entities.

5.1 Optimizations
From Section 4.2.2, theworst-case quantity of DFAs thatmust be evaluated is bounded by (∥𝑠𝑔.𝑉 ∥)𝑛𝑚
for an expression with 𝑛 symbolic entities and a trace of length𝑚; we now discuss two key opti-
mizations that substantially reduce this burden to be practicable: type information and lazy binding.
Section 6.4 explores the efficiency of SceneFlow for practical use in a runtimemonitoring framework.

5.1.1 Type Information. The implementation allows for the inclusion of type information for the
symbolic entities in the description of𝜙 . In the SGG utilized in our implementation, each vertex has a
special attribute describing the type of the entity, e.g. lane, car, bus.When attempting to bind e𝑖 , only
those {𝑣 ∈𝑠𝑔.𝑉 : type(𝑣)= type(e𝑖)} are considered, greatly reducing the space of possible DFAs. The
DFAs that are not chosen can be thought of as immediately moving to the accepting trap state—since
the binding does not meet the type precondition it trivially cannot lead to a violation. In addition
to semantic type information defining the logical class the entity belongs to, the implementation
also allows for a second dimension of type information describing whether or not the entity must
be observed at the time of binding. Recall from Section 4.2.2 that the set of entities observed at time
𝑖 , 𝑠𝑒𝑛𝑠𝑒𝑑 [𝑖] .𝑉 , may not be the complete set of entities that have been seen, 𝑠𝑔[𝑖] .𝑉 . Depending on
the semantics of the property, it may be sound to only allow for entities to be bound to those that
are currently being observed. For example, a vehicle only needs to begin tracking yielding to another
vehicle if it can observe the other vehicle at that time. All symbolic entities explored in the study
utilize this type definition. This optimization can be particularly useful for long-running traceswhere
the number of entities observed at any particular time is much lower than the number of entities
that have ever been seen in the past, i.e. ∥𝑠𝑒𝑛𝑠𝑒𝑑 [𝑖] ∥≪ ∥𝑠𝑔[𝑖] .𝑉 ∥.

5.1.2 Lazy Binding. In addition to type information, the implementation attempts to delay the
binding of an entity as long as possible while monitoring. This allows the evaluation to consider
many equivalent entity bindings at once. Conceptually, this process is similar to techniques like
CEGAR [14], where a state space is explored quickly by grouping equivalent abstractions and
iteratively refining the abstraction if it becomes unsound; however, rather than counter-examples
guiding the refinement process, entity bindings are “refined” by trying all concretizationswhen doing

, Vol. 1, No. 1, Article . Publication date: April 2025.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Trovato et al.

so could lead to differing outcomes at that step. At each time step, SceneFlow instantiates a new
copy of the DFAwith all symbolic entities unbound, i.e.⊥. Then, the new DFA and any still-running
DFAs from previous time steps are evaluated over the current 𝑠𝑔 to determine their next state. For
each DFA, if the execution would proceed the same regardless of the binding of an entity, then this
allows the binding of⊥ to serve as the canonical representation until such time as the binding would
differentiate the behavior of the DFA, effectively allowing the implementation to evaluate many
equivalent parts of the search-space through the canonical representation. If evaluation would be
different, the DFA evaluation branches to consider e∈𝑠𝑔.𝑉 ∪{⊥}. This branching can occur in two
possible ways. At each time step, the DFA evaluation attempts to use the current binding, or lack
thereof, to evaluate its state transitions; recall that the evaluation is optimistic and attempts to identify
a valid state transition if possible. If a valid state transition can be found with the current bindings,
no new bindings are made and the execution continues to the next step. If a state transition cannot be
found, thismeans that all potential state transitionswere either false or⊥, and since the set of possible
transitions for a DFAmust always be complete, at least one transition evaluated to⊥. In such case, the
set of symbolic entities that are currently unbound and referenced in any transition that evaluated to
⊥ are identified, and new DFA copies are created to bind those entities. In addition, any evaluation of
def (⊥) causes the evaluation to branch; this may alter evaluation in cases of, e.g. 𝑖𝑡𝑒 (def (e),𝑆1,𝑆2).

In addition to reducing the number of DFAs being evaluated, the implementation also shares the
evaluation of graph queries between different copies of the DFAs. If a DFA transition contains an
𝐴𝑃 expressed over some set of symbolic entities, 𝐸, then any DFAs that have the same set of bindings
with respect to 𝐸 form an equivalence class over that 𝐴𝑃 and the 𝐴𝑃 is evaluated only once per
equivalence class; this can greatly reduce the number of queries, particularly in cases where a DFA
has a low number of symbolic entities per𝐴𝑃 relative to the total number of symbolic entities.
These optimizations are critical for the practical application of SceneFlow. To quantify the im-

provement, to evaluate one property expressed with three symbolic entities for the data collected for
the study in Section 6 which analyzed 33 traces (max length 3583, combined length 44455; max 813
entities, combined 13976 entities), an unoptimized version of SceneFlowwould need to evaluate
on the order of 1028000 DFAs. By contrast, our implementation utilized on the order of 108.

6 Study
We aim to answer the following research questions to demonstrate the utility of SceneFlow6.
RQ#1: What driving properties can SceneFlow express beyond prior approaches?
RQ#2: Can SceneFlow identify property violations in specific scenarios?
RQ#3: Can SceneFlow identify property violations in state-of-the-art research AV systems?
RQ#4: Is SceneFlow efficient enough to permit runtime monitoring?
RQ#1 aims to study the expressiveness of SceneFlow to capture the scene flow properties dis-

cussed in Section 3. RQ#2 explores SceneFlow’s ability to identify violations of these properties
by evaluating specific scenarios chosen to exhibit these properties. RQ#3 then explores the broader
applicability of SceneFlow to monitor three state-of-the-art AV systems in their test environments;
replicating the setup of the experiment in SGSM [66]. Finally, RQ#4 explores the efficiency of the
implementation of SceneFlow to determine its viability for runtime monitoring.

6.1 RQ#1: Successful encoding of scene flow properties
SceneFlow is expressive enough to specify all 23 scene flow properties identified in Section 3, and it
can do so for both the ego vehicle and all other vehicles simultaneously.We now examine how Scene-
Flow enables the expression of these properties. Table 2 demonstrates the successful encoding of 8 of
6Wemake our code and results available at: https://anonymous.4open.science/r/SceneFlowLang.

, Vol. 1, No. 1, Article . Publication date: April 2025.

https://anonymous.4open.science/r/SceneFlowLang

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Scene Flow Specifications: Encoding andMonitoring Rich Temporal Safety Properties of Autonomous Systems 15

Table 2. Successful encoding in SceneFlow of 8 properties from the Virginia driving code [2]. Symbolic entity

variables refer to their type: e is any vehicle, b is any bike, ℓ is any lane, andj is any intersection.

𝜙 §46.2 English description of Property LTL𝑓 formula
𝜙1 816 Ego should not follow other vehicles too closely ¬(𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒 (e2,e1)∧𝑠𝑎𝑚𝑒𝐿𝑎𝑛𝑒 (e1,e2)∧𝑏𝑒ℎ𝑖𝑛𝑑 (e2,e1)∧¬𝑠𝑡𝑜𝑝𝑝𝑒𝑑 (e1))∧

X(𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒 (e2,e1)∧𝑠𝑎𝑚𝑒𝐿𝑎𝑛𝑒 (e1,e2)∧𝑏𝑒ℎ𝑖𝑛𝑑 (e2,e1)∧¬𝑠𝑡𝑜𝑝𝑝𝑒𝑑 (e1))
=⇒

¬($[𝑇] [𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒 (e2,e1)∧𝑠𝑎𝑚𝑒𝐿𝑎𝑛𝑒 (e1,e2)∧𝑏𝑒ℎ𝑖𝑛𝑑 (e2,e1)∧¬𝑠𝑡𝑜𝑝𝑝𝑒𝑑 (e1)])
𝜙2 820 Ego should yield the right-of-way to the vehicle

on its right if both arrive at approximately the
same time

((¬𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e1,j))∧¬(𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e2,j))∧ℎ𝑎𝑠𝑆𝑡𝑜𝑝 (e2)∧ℎ𝑎𝑠𝑆𝑡𝑜𝑝 (e1))∧
X((𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e1,j)∧𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e2,j)∧𝑡𝑜𝑅𝑖𝑔ℎ𝑡𝑂𝑓 (e2,e1)))

=⇒
X(X(((𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e2,j)∧¬fullyInInter (e2,j)) U¬(𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e1,j)))))

𝜙3 821 Ego shouldyield the right-of-way to thevehicles
at an uncontrolled intersections if they arrived
at it earlier

(((𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e1,j))∧¬(𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e2,j))∧ℎ𝑎𝑠𝑆𝑡𝑜𝑝 (e2))∧X((𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e1,j)∧𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e2,j))))
=⇒

X(X(((𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e2,j)∧¬fullyInInter (e2,j)) U¬(𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e1,j)))))
𝜙4 829 Ego should yield the right-of-way to emergency

vehicles at a signaled intersection
(¬(𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e2)))∧X((𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e1,j)∧ℎ𝑎𝑠𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦𝐿𝑖𝑔ℎ𝑡𝑠 (e1)∧𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e2,j)∧𝑛𝑜𝑡𝐸𝑞𝑢𝑎𝑙 (e1,e2)))

=⇒
X(X(((𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e2,j)∧¬fullyInInter (e2,j)) U ¬(𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e1,j)))))

𝜙5 839 Ego should overtake a bicycle at a reasonable
speed and at least 3 ft to the left of it

(𝑏𝑒ℎ𝑖𝑛𝑑 (e1,b)∧𝑠𝑎𝑓 𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷 (e1,b)∧¬(𝑏𝑒ℎ𝑖𝑛𝑑 (b,e1))∧F((𝑏𝑒ℎ𝑖𝑛𝑑 (b,e1)∨¬(𝑠𝑎𝑓 𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷 (e1,b)))))
=⇒

X((𝑠𝑎𝑓 𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷 (e1,b) U𝑏𝑒ℎ𝑖𝑛𝑑 (b,e1)))
𝜙6 843 Ego should not drive to the opposing lane when

overtaking another vehicle unless that lane is
free of oncoming traffic for a sufficient distance
ahead to permit the overtaking

(𝑏𝑒ℎ𝑖𝑛𝑑 (e1,e2)∧𝑜𝑝𝑝𝑜𝑠𝑖𝑛𝑔𝐶𝑙𝑒𝑎𝑟 (e1,ℓ)∧¬(front (e2,e1))∧𝑜𝑛𝑙𝑦𝐼𝑛 (e1,ℓ)∧
F(((front (e2,e1)∧𝑜𝑛𝑙𝑦𝐼𝑛 (e1,ℓ))∨¬(𝑜𝑝𝑝𝑜𝑠𝑖𝑛𝑔𝐶𝑙𝑒𝑎𝑟 (e1,ℓ)))))

=⇒
X((𝑜𝑝𝑝𝑜𝑠𝑖𝑛𝑔𝐶𝑙𝑒𝑎𝑟 (e1,ℓ) U (front (e2,e1)∧𝑜𝑛𝑙𝑦𝐼𝑛 (e1,ℓ))))

𝜙7 846 Ego should keep the lane it is driving on after
leaving an intersection.

𝑜𝑛𝑙𝑦𝐼𝑛 (e,ℓ1)∧X(fullyInInter (e))∧X(X(((fullyInInter (e)∧¬(𝑜𝑛𝑙𝑦𝐼𝑛 (e,ℓ2))) U 𝑜𝑛𝑙𝑦𝐼𝑛 (e,ℓ2))))
=⇒

𝑜𝑛𝑙𝑦𝐼𝑛 (e,ℓ1)∧X(fullyInInter (e))∧X(X((fullyInInter (e)∧¬(𝑜𝑛𝑙𝑦𝐼𝑛 (e,ℓ2))) U (𝑜𝑛𝑙𝑦𝐼𝑛 (𝑒,ℓ2)∧𝑚𝑎𝑡𝑐ℎ (ℓ1,ℓ2))))
𝜙8 921 Ego should not follow any emergency vehicle

traveling with the sirens on closer than 500 ft
¬(𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒𝑇𝑜𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 (e2,e1)∧𝑠𝑎𝑚𝑒𝐿𝑎𝑛𝑒 (e1,e2)∧𝑏𝑒ℎ𝑖𝑛𝑑 (e2,e1)∧𝑖𝑠𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦𝑉𝑒ℎ𝑖𝑐𝑙𝑒 (e1))∧

X(𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒𝑇𝑜𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 (e2,e1)∧𝑠𝑎𝑚𝑒𝐿𝑎𝑛𝑒 (e1,e2)∧𝑏𝑒ℎ𝑖𝑛𝑑 (e2,e1)∧𝑖𝑠𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦𝑉𝑒ℎ𝑖𝑐𝑙𝑒 (e1))
=⇒

¬($[𝑇] [𝑡𝑜𝑜𝐶𝑙𝑜𝑠𝑒𝑇𝑜𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 (e2,e1)∧𝑠𝑎𝑚𝑒𝐿𝑎𝑛𝑒 (e1,e2)∧𝑏𝑒ℎ𝑖𝑛𝑑 (e2,e1)∧𝑖𝑠𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦𝑉𝑒ℎ𝑖𝑐𝑙𝑒 (e1)])

the 23 scene flowproperties identified in Section 3, so chosen to give a representative sample of the ex-
pressivenessof the language.Forexample,whencorrespondingpropertiesexist forbothstopsignsand
traffic lights,we explore only the stop sign property. To highlight the novel application of symbolic en-
titiesenabledbySceneFlow, eachproperty isdescribedby its temporal logic formulawithall𝐴𝑃 repre-
sented as functions over the relevant symbolic entities. Let us examine one such function defined over
two symbolic entities, 𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e1,j) which is true iff entity e1 is at intersectionj. This is used in 𝜙2,
𝜙3, and𝜙4 to determine an entity is at the intersection to track yielding. This function is expressed as:

𝑎𝑡𝐼𝑛𝑡𝑒𝑟 (e1,j)= ∥𝑟𝑒𝑙𝑆𝑒𝑡 (𝑟𝑒𝑙𝑆𝑒𝑡 (𝑟𝑒𝑙𝑆𝑒𝑡 ({e1},“𝑖𝑠𝐼𝑛”),“𝑖𝑠𝐼𝑛”),“𝑖𝑠𝐼𝑛”)∩{j}∥=1
Relying on the semantics of the SGG that encodes the semantics that entities have an “isIn” rela-
tionship with the lanes they occupy, which have an “isIn” relationship with the roads they occupy,
which have an “isIn” relationship with the intersections they occupy. Thus, the query finds the
set of intersections e1 is in, and, as a method for checking that the set includesj, checks that the
intersection of that set with the set containingjhas size 1. For space, we defer the rest of the graph
queries used for each of these functions to the online repository.

Note that𝜙1 and𝜙8 contain a parameter,𝑇 , for the amount of time spent too close to the vehicle that
will be considered following.We explore two parameterizations,𝑇 ∈ {10,50}, which correspond to 0.5
and 2.5 seconds as themonitor was evaluated at 20𝐻𝑧 in RQ#2. Although 0.5 seconds is unreasonably
strict, we include it in the study to demonstrate the functionality of the property as all vehicles studied
were too conservative to violate the more relaxed property. Similarly, 𝜙5 is based on § 46.2-839 that
prescribes a passing distance of at least 3 feet when overtaking a bicycle, which was implemented by
checking that the distance, center-to-center, was at least 2 meters. In the study, all vehicles respected
this distance and thus we implemented 𝜙∗

5 , a variation that increases the safe distance to 7 meters
to exhibit violations. This produces 12 parameterizations of the 8 properties.
Leveraging symbolic entities to monitor all road users. The use of symbolic entities not only

allows for the reasoning about the ego vehicle’s adherence to scene flow properties, but it ad-
ditionally allows for reasoning about all entities’ adherence to the properties simultaneously.
No formula in Table 2 references ego, instead relying on symbolic entities which can refer to

, Vol. 1, No. 1, Article . Publication date: April 2025.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Trovato et al.

(a) Scenario S2: Ego arrives at the intersection first

(left), yet theambulance takes the right-of-way (right).

Ego abides by 𝜙4, ambulance violates 𝜙3.

(b) Scenario S3: Ego begins to overtake too closely (𝜙∗5 ,
left), but does not finish before a vehicle comes in the

opposing lane (𝜙6, right).

Fig. 5. Example violations identified in RQ#2. Best viewed on a screen.

ego or any other vehicle. For example, 𝜙3 uses two symbolic entities to check that e2 appro-
priately yields to e1 at an intersection if e1 arrived first. Through this single definition,

Table 3. Property violations in scenarios stud-

ied. Properties with no violations omitted.

𝜙10
1 𝜙3 𝜙∗

5 𝜙6
e o e o e o e o

S1 1 - - 3 - - - -
S2 - - - 1 - - - -
S3 2 - - - 2 - 1 -
Total 3 - - 4 2 - 1 -

SceneFlow automatically checks that all possible com-
binations of vehicles yielded appropriately to each other.
This has potential applications in the field—if an au-
tonomous vehicle detects that another road user is not
appropriately yielding, itmayneed to alter its behavior in
response to drive more cautiously. In Table 2, a violation
has the semantics that the last-numbered entity is in vio-
lation, e.g. in 𝜙3 a violation means e2 failed to yield to e1.

6.2 RQ#2: Monitoring NHTSA Scenarios
Given CARLA’s ability to define different driving conditions, its developers have released two
AV challenges: leaderboard 1.0 [9] and leaderboard 2.0 [10] to evaluate the driving proficiency of
autonomous systems in realistic traffic scenarios. The leaderboard 2.0 challenge includes several
scenarios constructed based on the NHTSA pre-crash typology [1]. In RQ#2 we select three of these
scenarios for study, examining scenarios that were crafted to exhibit the behaviors monitored, i.e.
that meet the properties’ preconditions. Then, in RQ#3 we replicate the study from SGSM to monitor
three top-performing systems from leaderboard 1.0 with respect to the scene flow properties.
We selected three scenarios from leaderboard 2.0 to exhibit specific scenarios checked by the

properties in Table 2. These scenarios are pre-recorded driving logs provided by CARLA to exhibit
a specific behavior; as such, we expected all properties to be satisfied. Scenario S1, called Vehicle-
TurningRouteLeft, has ego approach a busy T-intersection to turn left; this targets 𝜙2 and 𝜙3 about
respecting right-of-way at the intersection. Scenario S2, calledOppositeVehicleTakingPriority, has
ego arrive at an intersection first, but then an ambulance takes the right-of-way and runs the stop
sign; this targets 𝜙4 about yielding to emergency vehicles regardless of timing. Scenario S3, called
HazardAtSideLaneTwoWays, has ego on a two-lane road following behind two bikes and must cross
into the opposing lane to pass them; this targets 𝜙5 and 𝜙6 about overtaking safely.
Table 3 shows the number of violations found per property. As discussed in Section 6.1, the

properties are expressed to check violations from all entities, not just the ego vehicle; this is denoted
in the two columns for each property with column “e” showing ego’s violations and column “o”
showing violations by other vehicles. For scenario S1, we find three violations of 𝜙3 targeted by
this scenario where in each case another vehicle did not wait its turn at the intersection. Upon
examining the trace, these cases all stem from the vehicle coming to a stop several meters behind the
stop line at the intersection, thus not meeting the criteria of being 𝑖𝑛𝐼𝑛𝑡𝑒𝑟 to claim their spot in the
order. For scenario S2, shown in Figure 5a, we see that although ego reached the intersection first, it
appropriately yielded to the ambulance, leading to no violation of 𝜙4. However, S2 does show one
violation of 𝜙3—the ambulance does not yield to ego. This highlights the importance of identifying

, Vol. 1, No. 1, Article . Publication date: April 2025.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Scene Flow Specifications: Encoding andMonitoring Rich Temporal Safety Properties of Autonomous Systems 17

Fig. 6. LAV [13] enters intersection from right-most

lane and exits into left-most lane, violating 𝜙7.

Table 4. Property violations in state-of-the-art AV.

Properties with no violations omitted.

𝜙2 𝜙3 𝜙∗
5 𝜙7

e o e o e o e o
TCP [70] - - 16 28 - - 2 -
LAV [13] - - 14 23 1 - 7 -
InterFuser [60] - 1 4 18 1 - - 1
Total - 1 34 69 2 - 9 1

interplay between requirements as the isolated text of § 46.2-821 does not contemplate this scenario.
This also showcases the utility of SceneFlowmonitoring other road users; even if ego did not know
the other vehicle was an ambulance, the monitor identifying it stealing the right-of-way could be
used to ensure ego takes appropriate precaution to stop to avoid a collision. Finally, scenario S3,
shown in Figure 5b, identifies violations of both𝜙∗

5 (left) and𝜙6 (right). In thismaneuver, ego attempts
to overtake the bike, but in beginning the maneuver invades the extended safety buffer of 𝜙∗

5 . Then,
once ego has passed the bike but is still in the opposing lane, a vehicle appears in that lane heading
toward ego, leading to a violation of 𝜙6. We note that both of these properties are parameterized by
the amount of buffer that must be afforded, both to the bike and in the opposing lane, and thus the
scenario design may have targeted different thresholds. These scenarios demonstrate SceneFlow’s
ability to successfully monitor for and identify violations of the relevant scene flow properties.

6.3 RQ#3: Monitoring AVs for scene flow properties
We now replicate the settings of the experiment carried out to validate SGSM [66], monitoring the
systems under tests’ ability to meet the specified scene flow properties, with results shown in Table 4.
As discussed in Section 2.3,𝜓4 and𝜓5 implemented for SGSMare over-approximations of𝜙1. Similarly,
while𝜓9 for SGSMmonitored that the vehicle stopped for each stop sign, it did not consider yielding
as in 𝜙2, 𝜙3, and 𝜙4. Further,𝜓8 for SGSMmonitored that the vehicle must exit the intersection in a
timely fashion, but not that it exit into the correct lane as in 𝜙7.
We find that these systems are particularly susceptible to not respecting the right-of-way of

vehicles that arrived at the intersection before them, with all three systems exhibiting at least one
violation and a combined total of 34 violations. Other road users share this same limitation with 69
violations; here, the system under test could leverage SceneFlow’s ability to identify when other
vehicles act out of turn to take precautionary action. Further, two of the systems exhibit multiple
violations of 𝜙7, not turning through the intersection properly as illustrated in Figure 6.

We remark here that these systems were not specifically designed to meet these specifications
as these rich temporal properties were not considered in the leaderboard ranking. This further
highlights the importance of encoding andmonitoring for these properties as enabled by SceneFlow
to ensure that autonomous systems that are developed abide by the full set of safe driving properties.

Utility of SceneFlow to express safe driving properties. SceneFlow can express 100%
of scene flow properties, detect violations in recorded NHTSA scenarios, and find faults in
state-of-the-art autonomous vehicles in simulation, including 34 instances across 30 tests
where they failed to yield the right-of-way at an intersection.

6.4 RQ#4: Efficiency for RuntimeMonitoring
For SceneFlow to provide utility as a runtimemonitoring technique, it must be amenable to efficient
execution. While the baseline technique of SGSM has a constant-time complexity [66], the runtime

, Vol. 1, No. 1, Article . Publication date: April 2025.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Trovato et al.

complexity of SceneFlow depends on the number of entities observed. This raises the question of
whether an implementation of SceneFlow is efficient enough for runtime monitoring.

Serial Parallel
Evaluation Method

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
to

 C
om

pu
te

 (s
ec

on
ds

)

Serial
4.12%>0.5s (2Hz)

Max:
18.31s

95% 0.45s

Parallel
0.37%>0.5s (2Hz)

Max:
13.46s

95% 0.21s

Time to Compute Properties per Frame

0.5s (2Hz) Framerate
5% to 95%
Median
Mean

Fig. 7. Box plot of evaluation time per

frame for violations by ego.

As discussed in Section 6.1, the properties evaluated hereto-
fore track not only whether the ego vehicle violated the prop-
erty, but also whether any other vehicles violated the property
as well by using a symbolic entity to refer to both the entity
being monitored and all other entities relevant to the prop-
erty. This incurs substantial runtime cost as each additional
symbolic entity expands the state space; replacing one sym-
bolic entity with the ego vehicle reduces the complexity. Given
this trade off, we now focus on monitoring only for proper-
ties that track violations by the ego vehicle; full discussion of
monitoring for all vehicles is available in the online reposi-
tory. Another trade off arises in the method of evaluating the
properties—evaluating all properties simultaneously in par-
allel requires less time than running serially, at the expense
of requiring additional computational resources. We consider
both fully parallelized evaluation and serial evaluation of the
12 parameterizations explored above.

Following from Section 6.3, we evaluate the ability of our
SceneFlow implementation to meet the real-time constraint
imposed by the experiment of SGSM in which scene graphs
were collected at 2Hz. Setting aside the concern for how long it
takes to generate the scene graphwhich affects both SGSMand SceneFlow, this imposes amaximum
of 0.5 seconds per frame to evaluate all properties. To measure the time it takes to evaluate the
properties, we ran the evaluation 10 times per configuration on an AMD EPYC 9454, recording the
time to evaluate theproperties per frame.Toeliminate threading effects, the timeunderparallelization
was measured by evaluating each property individually and taking the maximum for the frame.

Figure 7 shows box plots of the amount of time taken for serial and parallel evaluation per frame.
The whiskers of the plot show the times for the fastest 5% and 95%. The blue dashed line shows the
0.5s constraint, with the text above detailing howmany data points failed to meet this 2𝐻𝑧 criteria.
Serial evaluation performs slowest; although the median and 95% time per frame were within the
constraint, 4.12% of frames took longer than 0.5s, with a maximum time of 18.31s. Switching to
parallel evaluation provides a marked improvement, with 95% of frames finishing within 0.21s, and
only 0.37% of frames exceeding the constraint with a maximum time of 13.46s.

The discrepancy between the median andmaximum evaluation times highlights a key difficulty in
evaluating scene flowproperties—the evaluation time depends on the quantity of entities in the scene,
which is unbounded in the realworld. As the number of entities in the scene grows, the time it takes to
soundly evaluate the properties may grow beyond the real-time constraint; i.e., stopping evaluation
at the real-time constraint may miss violations. Future work should explore methods to prioritize
entities and properties for evaluation to minimize false negatives. Consider for example a busy
intersection with many vehicles waiting their turn at the stop sign per 𝜙3; while sound evaluation
requires considering all vehicles in line, in practice evaluation that prioritizes considering vehicles
closer to the intersection would likely lead to fewmissed violations.

Overall, the implementation of SceneFlow is suitable for real-time operation.Additionally, further
optimizations of the research-prototype Python implementation (online), including using a compiled
and optimized language and leveraging custom hardware, will improve performance.

, Vol. 1, No. 1, Article . Publication date: April 2025.

https://anonymous.4open.science/r/SceneFlowLang

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Scene Flow Specifications: Encoding andMonitoring Rich Temporal Safety Properties of Autonomous Systems 19

Efficiency of SceneFlow for runtimemonitoring. The implementation of SceneFlow
is suitable for runtime monitoring. When evaluating properties in parallel monitoring for
violations by the ego vehicle, 99.63% of frames meet the real-time constraint.

6.5 Threats to Validity
Wehave demonstrated the successful application of SceneFlow to both express scene flowproperties
and identify violations of these properties through a runtime monitoring approach leveraging SGs.
However, the external validity of our results is limited by our use of simulation. While working in
simulation allowed us to collect high-quality SGs to study the efficacy of SceneFlow in isolation,
further study on its application to real-world systems is needed to better understand the generality
of the approach. Our external validity is further affected by our focus on autonomous vehicles and
driving properties; while SceneFlow is broadly applicable as discussed in Section 8, this remains to
be empirically validated. The internal validity of our results is impacted by our implementation of
SceneFlow and the safety properties studied and expressed through SceneFlow. We have carried
out extensive validation efforts to that end and release our data and code to mitigate this threat.

7 RelatedWork
Prior work has recognized the importance of ensuring autonomous systems abide by their safety
requirements. However, no prior work is suitable for runtime monitoring of scene flow properties.
We now briefly present work on specifying and monitoring properties for autonomous systems.

7.1 Safety Property Specification
A recent survey on leveraging formal methods to comply with driving rules for autonomous driv-
ing [48] highlights the importance of formalizing driving behaviors. Recent works have studied
driving codes from different countries, aiming to encode portions of their rules using formalmethods.
For instance, Esterle et al. [24] analyzes the German concretization of the Vienna convention on road
traffic, encoding portions in LTL. Zhang et al. [77] studied the US Department of Motor Vehicles
(DMV) driver manual and encoded some driving rules using their custom framework, AVChecker.
Kochanthara et al. [34] analyze the Dutch highway manual and analyze whether those requirements
are met at the design level of two AV systems. Nonetheless, none of them assessed what percentage
of the driving rules they were able to encode using formal specifications. We perform a full analysis
of the relevant Virginia driving code [2] and found that 96% can be encoded using SceneFlow. Sun et
al [63, 64] use STL to fully encode Chinese traffic laws; however, this effort only encodes the temporal
aspect without regard for extracting atomic propositions from sensor data. The PriorityV Boolean
variable [64] assumes an external oracle of whether another vehicle has priority at an intersection
whereas SceneFlow enables reasoning about such a vehicle directly (𝜙3). Complementary to this
effort, there are on-going works that explore the usage of rulebooks [11, 15], which impose a partial
order on the set of properties to prevent, e.g., the conflict between 𝜙3 and 𝜙4. We leave extensions
applying rulebooks to SceneFlow for future work.

7.2 SafetyMonitors for Autonomous Systems
Prior work has developed monitors for AV subcomponents like adaptive cruise control [76], collision
avoidance [42, 43, 45], trajectory prediction [25], or lane changing and overtaking [59, 69]. In contrast,
otherworks have focused on end-to-endAV systems including using Signal Temporal Logic (STL) [19,
63, 64, 76], Linear Temporal Logic (LTL) [47, 62] and First Order Logic (FOL) [50] to monitor different
systems. Two particularly relevant works introduce spatial relationships between different entities in

, Vol. 1, No. 1, Article . Publication date: April 2025.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Trovato et al.

a scene using graph representations [50] and metric spaces respectively [47]. Further, reinforcement
learning shielding has been explored to increase the robustness of the agent behavior by learning [4]
and enforcing [35] safety properties using temporal logic; similar approaches have sought to integrate
runtime monitoring with the system’s decision making to ensure compliance [64]. Nonetheless,
these techniques suffer from either one or both of the following two main limitations. First, despite
using temporal properties, they lack a mechanism to reason about the same entity through time—
a core requirement of scene flow properties we tackle through SceneFlow. Second, prior work
takes for granted the evaluation of the atomic propositions (APs), ignoring the fact that a mapping
between sensor inputs and the AP values is needed. To overcome the second issue, Anderson et al. [5]
introduced spatial regular expressions to match different patterns over a sequence of images, but it is
limited by only reasoning about 2D bounding boxes, which over-approximate the shape of objects
and are imprecise for 3D reasoning. In this work we use SGGs, detailed in Section 2.1, to convert
the sensor inputs into SGs, which we then use for evaluating the APs; SGGs are an active area of
research and continually improving [52, 53].

8 Beyond Autonomous Vehicles and Driving Properties
The development of SceneFlowwas motivated by the limited expressiveness of previous work to
capture common safe driving properties. However, SceneFlow is applicable to any autonomous
system that must abide to specifications over a complex spatio-temporal context captured through
rich multidimensional sensors. For example, pick-and-place robots in a warehouse, using LiDAR
and cameras, would use SGs to capture the distribution of the objects to manipulate and the surfaces
where they sit, and properties specified through SceneFlow would constrain how and in what
sequence those objects must be manipulated in order to avoid breakages. Surgical robots assisting
doctors would use SGs to recognize organs, surgeons’ hands, surgery instruments, and properties
specified through SceneFlowwould control that the right instruments are used in the right order
and on the right organs. Finally, drones in a swarmwould use SGs to capture their position and line
of sight to peer drones, and specify properties in SceneFlow to enforce swarm formationmaneuvers
and formation adjustments in the presence of external entities.

9 Conclusion
In this work we have: (1) provided a characterization of the space of safe driving properties and
identified expressiveness gaps in existing specification languages, (2) designed a domain-specific
language SceneFlow that addresses the significant gap of scene flow properties through the novel
use of symbolic entities, and (3) implemented a highly-optimized monitoring approach showing
the application of SceneFlow in practice operating under various simulation scenarios and target
systems demonstrating the potential of the approach to detect complex but common property
violations involving multiple entities with rich relationships manifested over time. As part of the
future work, we aim to apply SceneFlow in the field with a full end-to-end pipeline including
SGGs captured from sensor data, for more complex situations including for swarm and platoon
deployments, and for additional autonomous systems such as those discussed in Section 8.

10 Data Availability
Our artifact, including the SceneFlow implementation, the study data, a replication package, and de-
tailsabout thepropertiesexamined,areavailableathttps://anonymous.4open.science/r/SceneFlowLang.

, Vol. 1, No. 1, Article . Publication date: April 2025.

https://anonymous.4open.science/r/SceneFlowLang

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Scene Flow Specifications: Encoding andMonitoring Rich Temporal Safety Properties of Autonomous Systems 21

References
[1] [n. d.]. Pre-Crash Scenario Typology for Crash Avoidance Research.
[2] [n. d.]. Virginia Code Title 46.2 Chapter 8 - Motor Vehicles, Regulation of Traffic.
[3] MunaOAlmasawa,LamiaaAElrefaei, andKawtharMoria. 2019. Asurveyondeep learning-basedpersonre-identification

systems. IEEE Access 7 (2019), 175228–175247.
[4] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and Ufuk Topcu. 2018. Safe

reinforcement learning via shielding. In Proceedings of the AAAI conference on artificial intelligence, Vol. 32.
[5] Jacob Anderson, Georgios Fainekos, Bardh Hoxha, Hideki Okamoto, and Danil Prokhorov. 2023. Pattern matching for

perception streams. In International Conference on Runtime Verification. Springer, 251–270.
[6] Iro Armeni, Zhi-Yang He, Amir Zamir, Junyoung Gwak, Jitendra Malik, Martin Fischer, and Silvio Savarese. 2019. 3D

Scene Graph: A Structure for Unified Semantics, 3D Space, and Camera. In 2019 IEEE/CVF International Conference on
Computer Vision (ICCV). 5663–5672. https://doi.org/10.1109/ICCV.2019.00576

[7] NTS Board. 2019. Collision between vehicle controlled by developmental automated driving system and pedestrian. Nat.
Transpot. Saf. Board, Washington, DC. Technical Report. USA, Tech. Rep. HAR-19-03, 2019. URL https://www. ntsb.
gov/investigations

[8] Neal E Boudette and Niraj Chokshi. 2021. U.S. Will Investigate Tesla’s Autopilot System Over CrashesWith Emergency
Vehicles. New York Times (Aug 2021). https://www.nytimes.com/2021/08/16/business/tesla-autopilot-nhtsa.html

[9] CarlaSimulator. [n. d.]. CARLA Leaderboard. https://leaderboard.carla.org/#leaderboard-10. Accessed: 2024-07-19.
[10] CarlaSimulator. [n. d.]. CARLA Leaderboard 2.0. https://leaderboard.carla.org/. Accessed: 2024-09-09.
[11] Andrea Censi, Konstantin Slutsky, TichakornWongpiromsarn, Dmitry Yershov, Scott Pendleton, James Fu, and Emilio

Frazzoli. 2019. Liability, Ethics, and Culture-Aware Behavior Specification using Rulebooks. In 2019 International
Conference on Robotics and Automation (ICRA). 8536–8542. https://doi.org/10.1109/ICRA.2019.8794364

[12] Xiaojun Chang, Pengzhen Ren, Pengfei Xu, Zhihui Li, Xiaojiang Chen, and Alexander G. Hauptmann. 2021. A Com-
prehensive Survey of Scene Graphs: Generation and Application. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2021), 1–1. https://doi.org/10.1109/TPAMI.2021.3137605

[13] Dian Chen and Philipp Krähenbühl. 2022. Learning from all vehicles. In CVPR.
[14] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000. Counterexample-guided abstraction

refinement. In Computer Aided Verification: 12th International Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000.
Proceedings 12. Springer, 154–169.

[15] Anne Collin, Artur Bilka, Scott Pendleton, and Radboud Duintjer Tebbens. 2020. Safety of the Intended Driving Behavior
UsingRulebooks. In2020 IEEE IntelligentVehicles Symposium(IV). 136–143. https://doi.org/10.1109/IV47402.2020.9304588

[16] Christoph Czepa and Uwe Zdun. 2018. On the understandability of temporal properties formalized in linear temporal
logic, property specification patterns and event processing language. IEEE Transactions on Software Engineering 46, 1
(2018), 100–112.

[17] Bo Dai, Yuqi Zhang, and Dahua Lin. 2017. Detecting Visual Relationships with Deep Relational Networks. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 3298–3308. https://doi.org/10.1109/CVPR.2017.352

[18] Giuseppe De Giacomo, Moshe Y Vardi, et al. 2013. Linear Temporal Logic and Linear Dynamic Logic on Finite Traces.. In
Ijcai, Vol. 13. 854–860.

[19] Ankush Desai, Tommaso Dreossi, and Sanjit A Seshia. 2017. Combining model checking and runtime verification for
safe robotics. In International Conference on Runtime Verification. Springer, 172–189.

[20] Deepak Kumar Dewangan and Satya Prakash Sahu. 2020. Real time object tracking for intelligent vehicle. In 2020 first
international conference on power, control and computing technologies (ICPC2T). IEEE, 134–138.

[21] Greg Dietrerich. 2023. Further update on emergency vehicle collision. https://www.getcruise.com/news/blog/2023/
further-update-on-emergency-vehicle-collision/ Accessed on 05.05.2024.

[22] Alexey Dosovitskiy, Germán Ros, Felipe Codevilla, Antonio M. López, and Vladlen Koltun. 2017. CARLA: An Open
Urban Driving Simulator. CoRR abs/1711.03938 (2017). arXiv:1711.03938 http://arxiv.org/abs/1711.03938

[23] Matthew B Dwyer, George S Avrunin, and James C Corbett. 1999. Patterns in property specifications for finite-state
verification. In Proceedings of the 21st international conference on Software engineering. 411–420.

[24] Klemens Esterle, Luis Gressenbuch, and Alois Knoll. 2020. Formalizing Traffic Rules forMachine Interpretability. In 2020
IEEE 3rd Connected and Automated Vehicles Symposium (CAVS). 1–7. https://doi.org/10.1109/CAVS51000.2020.9334599

[25] Alec Farid, Sushant Veer, Boris Ivanovic, Karen Leung, and Marco Pavone. 2023. Task-relevant failure detection for
trajectory predictors in autonomous vehicles. In Conference on Robot Learning. PMLR, 1959–1969.

[26] Francesco Fuggitti. 2019. LTLf2DFA. https://doi.org/10.5281/zenodo.3888410
[27] Lizhao Gao, BoWang, andWenminWang. 2018. Image Captioning with Scene-graph Based Semantic Concepts. In

Proceedings of the 2018 10th International Conference on Machine Learning and Computing (Macau, China) (ICMLC ’18).
Association for Computing Machinery, New York, NY, USA, 225–229. https://doi.org/10.1145/3195106.3195114

, Vol. 1, No. 1, Article . Publication date: April 2025.

https://doi.org/10.1109/ICCV.2019.00576
https://www.nytimes.com/2021/08/16/business/tesla-autopilot-nhtsa.html
https://leaderboard.carla.org/##leaderboard-10
https://leaderboard.carla.org/
https://doi.org/10.1109/ICRA.2019.8794364
https://doi.org/10.1109/TPAMI.2021.3137605
https://doi.org/10.1109/IV47402.2020.9304588
https://doi.org/10.1109/CVPR.2017.352
https://www.getcruise.com/news/blog/2023/further-update-on-emergency-vehicle-collision/
https://www.getcruise.com/news/blog/2023/further-update-on-emergency-vehicle-collision/
https://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1711.03938
https://doi.org/10.1109/CAVS51000.2020.9334599
https://doi.org/10.5281/zenodo.3888410
https://doi.org/10.1145/3195106.3195114

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Trovato et al.

[28] Carl Hildebrandt, Trey Woodlief, and Sebastian Elbaum. 2024. ODD-diLLMma: Driving Automation System ODD
Compliance Checking using LLMs. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, 13809–13816.

[29] Hengle Jiang, Sebastian Elbaum, and Carrick Detweiler. 2013. Reducing failure rates of robotic systems though inferred
invariants monitoring. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 1899–1906.

[30] Justin Johnson, Agrim Gupta, and Li Fei-Fei. 2018. Image Generation from Scene Graphs. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 1219–1228. https://doi.org/10.1109/CVPR.2018.00133

[31] Jaewon Jung and Jongyoul Park. 2018. Visual Relationship Detection with Language prior and Softmax. In 2018 IEEE
International Conference on Image Processing, Applications and Systems (IPAS). 143–148. https://doi.org/10.1109/IPAS.
2018.8708855

[32] Nidhi Kalra and SusanM. Paddock. 2016. Driving to Safety: HowManyMiles of DrivingWould It Take to Demonstrate
Autonomous Vehicle Reliability? RAND Corporation, Santa Monica, CA. https://doi.org/10.7249/RR1478

[33] Ue-Hwan Kim, Jin-Man Park, Taek-jin Song, and Jong-Hwan Kim. 2020. 3-D Scene Graph: A Sparse and Semantic
RepresentationofPhysical Environments for IntelligentAgents. IEEETransactions onCybernetics 50, 12 (2020), 4921–4933.
https://doi.org/10.1109/TCYB.2019.2931042

[34] Sangeeth Kochanthara, Tajinder Singh, Alexandru Forrai, and Loek Cleophas. 2024. Safety of Perception Systems for
Automated Driving: A Case Study on Apollo. ACM Trans. Softw. Eng. Methodol. 33, 3, Article 64 (mar 2024), 28 pages.
https://doi.org/10.1145/3631969

[35] Bettina Könighofer, Julian Rudolf, Alexander Palmisano, Martin Tappler, and Roderick Bloem. 2022. Online shielding
for reinforcement learning. Innovations in Systems and Software Engineering (2022), 1–16.

[36] Hongsheng Li, Guangming Zhu, Liang Zhang, Youliang Jiang, Yixuan Dang, Haoran Hou, Peiyi Shen, Xia Zhao, Syed
Afaq Ali Shah, andMohammed Bennamoun. 2024. Scene Graph Generation: A comprehensive survey. Neurocomput.
566, C (mar 2024), 25 pages. https://doi.org/10.1016/j.neucom.2023.127052

[37] Jiachen Li, Haiming Gang, HengboMa, Masayoshi Tomizuka, and Chiho Choi. 2022. Important Object Identification
with Semi-Supervised Learning for Autonomous Driving. In 2022 International Conference on Robotics and Automation
(ICRA) (Philadelphia, PA, USA). IEEE Press, 2913–2919. https://doi.org/10.1109/ICRA46639.2022.9812234

[38] Yikang Li, Wanli Ouyang, XiaogangWang, and Xiao’Ou Tang. 2017. ViP-CNN: Visual Phrase Guided Convolutional
Neural Network. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 7244–7253. https:
//doi.org/10.1109/CVPR.2017.766

[39] Yikang Li, Wanli Ouyang, Bolei Zhou, KunWang, and XiaogangWang. 2017. Scene Graph Generation from Objects,
Phrases and Region Captions. In 2017 IEEE International Conference on Computer Vision (ICCV). 1270–1279. https:
//doi.org/10.1109/ICCV.2017.142

[40] Wentong Liao, Bodo Rosenhahn, Ling Shuai, andMichael Ying Yang. 2019. Natural LanguageGuided Visual Relationship
Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 444–453.
https://doi.org/10.1109/CVPRW.2019.00058

[41] Hengyue Liu, Ning Yan, Masood Mortazavi, and Bir Bhanu. 2021. Fully Convolutional Scene Graph Generation. In
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 11541–11551. https://doi.org/10.1109/
CVPR46437.2021.01138

[42] Aaron Lohner, Francesco Compagno, Jonathan Francis, and Alessandro Oltramari. 2024. Enhancing Vision-Language
Models with Scene Graphs for Traffic Accident Understanding. arXiv:2407.05910 [cs.CV] https://arxiv.org/abs/2407.
05910

[43] Chenxia Luo, Rui Wang, Yu Jiang, Kang Yang, Yong Guan, Xiaojuan Li, and Zhiping Shi. 2018. Runtime verification
of robots collision avoidance case study. In 2018 IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC), Vol. 1. IEEE, 204–212.

[44] Arnav VaibhavMalawade, Shih-Yuan Yu, Brandon Hsu, Harsimrat Kaeley, Anurag Karra, andMohammad Abdullah
Al Faruque. 2022. Roadscene2vec: A Tool for Extracting and Embedding Road Scene-Graphs. Know.-Based Syst. 242, C
(apr 2022), 12 pages. https://doi.org/10.1016/j.knosys.2022.108245

[45] Arnav Vaibhav Malawade, Shih-Yuan Yu, Brandon Hsu, Deepan Muthirayan, Pramod P. Khargonekar, and Mohammad
Abdullah Al Faruque. 2022. Spatiotemporal Scene-Graph Embedding for Autonomous Vehicle Collision Prediction.
IEEE Internet of Things Journal 9, 12 (2022), 9379–9388. https://doi.org/10.1109/JIOT.2022.3141044

[46] AarianMarshall. 2018. Uber video shows the kind of crash self-driving cars are made to avoid. https://www.wired.com/
story/uber-self-driving-crash-video-arizona/

[47] André Matos Pedro, Tomás Silva, Tiago Sequeira, João Lourenço, João Costa Seco, and Carla Ferreira. 2024. Monitoring
of spatio-temporal properties with nonlinear SAT solvers. Int. J. Softw. Tools Technol. Transf. 26, 2 (feb 2024), 169–188.
https://doi.org/10.1007/s10009-024-00740-7

[48] Noushin Mehdipour, Matthias Althoff, Radboud Duintjer Tebbens, and Calin Belta. 2023. Formal methods to comply
with rules of the road in autonomous driving: State of the art and grand challenges. Automatica 152 (2023), 110692.

, Vol. 1, No. 1, Article . Publication date: April 2025.

https://doi.org/10.1109/CVPR.2018.00133
https://doi.org/10.1109/IPAS.2018.8708855
https://doi.org/10.1109/IPAS.2018.8708855
https://doi.org/10.7249/RR1478
https://doi.org/10.1109/TCYB.2019.2931042
https://doi.org/10.1145/3631969
https://doi.org/10.1016/j.neucom.2023.127052
https://doi.org/10.1109/ICRA46639.2022.9812234
https://doi.org/10.1109/CVPR.2017.766
https://doi.org/10.1109/CVPR.2017.766
https://doi.org/10.1109/ICCV.2017.142
https://doi.org/10.1109/ICCV.2017.142
https://doi.org/10.1109/CVPRW.2019.00058
https://doi.org/10.1109/CVPR46437.2021.01138
https://doi.org/10.1109/CVPR46437.2021.01138
https://arxiv.org/abs/2407.05910
https://arxiv.org/abs/2407.05910
https://arxiv.org/abs/2407.05910
https://doi.org/10.1016/j.knosys.2022.108245
https://doi.org/10.1109/JIOT.2022.3141044
https://www.wired.com/story/uber-self-driving-crash-video-arizona/
https://www.wired.com/story/uber-self-driving-crash-video-arizona/
https://doi.org/10.1007/s10009-024-00740-7

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Scene Flow Specifications: Encoding andMonitoring Rich Temporal Safety Properties of Autonomous Systems 23

https://doi.org/10.1016/j.automatica.2022.110692
[49] AntonMilan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad Schindler. 2016. MOT16: A benchmark formulti-object

tracking. arXiv preprint arXiv:1603.00831 (2016).
[50] ChristopherMorse, Lu Feng,MatthewDwyer, and Sebastian Elbaum. 2023. A Framework for the Unsupervised Inference

of Relations Between Sensed Object Spatial Distributions and Robot Behaviors. In 2023 IEEE International Conference on
Robotics and Automation (ICRA). 901–908. https://doi.org/10.1109/ICRA48891.2023.10161071

[51] Office of Public Affairs. 2024. Autonomous Vehicle Permit Holders Report A Record 9 Million Test Miles In California In
12 Months. https://www.dmv.ca.gov/portal/news-and-media/news-releases/autonomous-vehicle-permit-holders-
report-a-record-9-million-test-miles-in-california-in-12-months/.

[52] PapersWithCode. 2023. Panoptic Scene Graph Generation on PSG Dataset. https://paperswithcode.com/sota/panoptic-
scene-graph-generation-on-psg Accessed on 08.20.2024.

[53] PapersWithCode. 2023. Scene Graph Generation on Visual Genome. https://paperswithcode.com/sota/scene-graph-
generation-on-visual-genome?metric=mean%20Recall%20%4020 Accessed on 08.20.2024.

[54] Srinivas Pinisetty, Partha S Roop, Steven Smyth, Nathan Allen, Stavros Tripakis, and Reinhard Von Hanxleden. 2017.
Runtime enforcement of cyber-physical systems. ACM Transactions on Embedded Computing Systems (TECS) 16, 5s
(2017), 1–25.

[55] Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium on Foundations of Computer Science (sfcs
1977). 46–57. https://doi.org/10.1109/SFCS.1977.32

[56] Aayush Prakash, Shoubhik Debnath, Jean-Francois Lafleche, Eric Cameracci, Gavriel State, Stan Birchfield, and Marc T.
Law. 2021. Self-Supervised Real-to-Sim Scene Generation. In 2021 IEEE/CVF International Conference on Computer Vision
(ICCV). 16024–16034. https://doi.org/10.1109/ICCV48922.2021.01574

[57] Thomas Reinbacher, Matthias Függer, and Jörg Brauer. 2014. Runtime verification of embedded real-time systems.
Formal methods in system design 44 (2014), 203–239.

[58] Abhirup Roy and Hyunjoo Jin. 2023. California regulator probes crashes involving GM’s Cruise robo-
taxis. https://www.reuters.com/business/autos-transportation/gms-cruise-robotaxi-collides-with-fire-truck-san-
francisco-2023-08-19/

[59] Maike Schwammberger. 2021. Distributed controllers for provably safe, live and fair autonomous car manoeuvres in
urban traffic. https://api.semanticscholar.org/CorpusID:237298372

[60] Hao Shao, LetianWang, Ruobing Chen, Hongsheng Li, and Yu Liu. 2023. Safety-enhanced autonomous driving using
interpretable sensor fusion transformer. In Conference on Robot Learning. PMLR, 726–737.

[61] Guibao Shen, LuozhouWang, Jiantao Lin,WenhangGe, Chaozhe Zhang, Xin Tao, Yuan Zhang, PengfeiWan, Zhongyuan
Wang, Guangyong Chen, Yijun Li, and Ying-Cong Chen. 2024. SG-Adapter: Enhancing Text-to-Image Generation with
Scene Graph Guidance. arXiv:2405.15321 [cs.CV]

[62] Joseph Stamenkovich, LakshmanMaalolan, and Cameron Patterson. 2019. Formal assurances for autonomous systems
without verifying application software. In 2019Workshop on Research, Education and Development of Unmanned Aerial
Systems (RED UAS). IEEE, 60–69.

[63] Yang Sun, Christopher M Poskitt, Jun Sun, Yuqi Chen, and Zijiang Yang. 2022. LawBreaker: An approach for specifying
traffic laws and fuzzing autonomous vehicles. In Proceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering. 1–12.

[64] Yang Sun, ChristopherM Poskitt, Xiaodong Zhang, and Jun Sun. 2024. REDriver: Runtime Enforcement for Autonomous
Vehicles. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. 1–12.

[65] Brad Templeton. 2020. Tesla In Taiwan Crashes Directly Into Overturned Truck, Ignores Pedestrian, With Autopilot On.
Forbes (Jun 2020). https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-taiwan-crashes-directly-into-
overturned-truck-ignores-pedestrian-with-autopilot-on/?sh=20a7458f58e5link

[66] Felipe Toledo, TreyWoodlief, Sebastian Elbaum, and Matthew B. Dwyer. 2024. Specifying and Monitoring Safe Driving
Properties with Scene Graphs. In 2024 IEEE International Conference on Robotics and Automation (ICRA). 15577–15584.
https://doi.org/10.1109/ICRA57147.2024.10610973

[67] Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, and Guiguang Ding. 2024. YOLOv10: Real-Time
End-to-End Object Detection. arXiv preprint arXiv:2405.14458 (2024).

[68] HongboWang, Jiaying Hou, and Na Chen. 2019. A survey of vehicle re-identification based on deep learning. IEEE
Access 7 (2019), 172443–172469.

[69] HuihuiWu,DeyunLyu, YananZhang,GangHou,MasahikoWatanabe, JieWang, andWeiqiangKong. 2022. Averification
framework for behavioral safety of self-driving cars. IET Intelligent Transport Systems 16, 5 (2022), 630–647.

[70] PenghaoWu, Xiaosong Jia, Li Chen, Junchi Yan, Hongyang Li, and Yu Qiao. 2022. Trajectory-guided control prediction
for end-to-end autonomous driving: A simple yet strong baseline. Advances in Neural Information Processing Systems 35
(2022), 6119–6132.

, Vol. 1, No. 1, Article . Publication date: April 2025.

https://doi.org/10.1016/j.automatica.2022.110692
https://doi.org/10.1109/ICRA48891.2023.10161071
https://www.dmv.ca.gov/portal/news-and-media/news-releases/autonomous-vehicle-permit-holders-report-a-record-9-million-test-miles-in-california-in-12-months/
https://www.dmv.ca.gov/portal/news-and-media/news-releases/autonomous-vehicle-permit-holders-report-a-record-9-million-test-miles-in-california-in-12-months/
https://paperswithcode.com/sota/panoptic-scene-graph-generation-on-psg
https://paperswithcode.com/sota/panoptic-scene-graph-generation-on-psg
https://paperswithcode.com/sota/scene-graph-generation-on-visual-genome?metric=mean%20Recall%20%4020
https://paperswithcode.com/sota/scene-graph-generation-on-visual-genome?metric=mean%20Recall%20%4020
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/ICCV48922.2021.01574
https://www.reuters.com/business/autos-transportation/gms-cruise-robotaxi-collides-with-fire-truck-san-francisco-2023-08-19/
https://www.reuters.com/business/autos-transportation/gms-cruise-robotaxi-collides-with-fire-truck-san-francisco-2023-08-19/
https://api.semanticscholar.org/CorpusID:237298372
https://arxiv.org/abs/2405.15321
https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-taiwan-crashes-directly-into-overturned-truck-ignores-pedestrian-with-autopilot-on/?sh=20a7458f58e5link
https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-taiwan-crashes-directly-into-overturned-truck-ignores-pedestrian-with-autopilot-on/?sh=20a7458f58e5link
https://doi.org/10.1109/ICRA57147.2024.10610973

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Trovato et al.

[71] YuxinWu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. 2019. Detectron2. https://github.com/
facebookresearch/detectron2.

[72] Danfei Xu, Yuke Zhu, Christopher B. Choy, and Li Fei-Fei. 2017. Scene Graph Generation by Iterative Message Passing.
In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 3097–3106. https://doi.org/10.1109/CVPR.
2017.330

[73] Zhuoqian Yang, Zengchang Qin, Jing Yu, and TaoWan. 2020. Prior Visual Relationship Reasoning For Visual Question
Answering. In 2020 IEEE International Conference on Image Processing (ICIP). 1411–1415. https://doi.org/10.1109/
ICIP40778.2020.9190771

[74] Mang Ye, Jianbing Shen, Gaojie Lin, Tao Xiang, Ling Shao, and Steven CH Hoi. 2021. Deep learning for person
re-identification: A survey and outlook. IEEE transactions on pattern analysis and machine intelligence 44, 6 (2021),
2872–2893.

[75] Ruichi Yu, Ang Li, Vlad I. Morariu, and Larry S. Davis. 2017. Visual Relationship Detection with Internal and External
Linguistic Knowledge Distillation. In 2017 IEEE International Conference on Computer Vision (ICCV). 1068–1076. https:
//doi.org/10.1109/ICCV.2017.121

[76] Eleni Zapridou, Ezio Bartocci, and Panagiotis Katsaros. 2020. Runtime verification of autonomous driving systems in
CARLA. In International Conference on Runtime Verification. Springer, 172–183.

[77] Qingzhao Zhang, David Ke Hong, Ze Zhang, Qi Alfred Chen, Scott Mahlke, and Z. Morley Mao. 2021. A Systematic
Framework to Identify Violations of Scenario-dependent Driving Rules in Autonomous Vehicle Software. Proc. ACM
Meas. Anal. Comput. Syst. 5, 2, Article 15 (jun 2021), 25 pages. https://doi.org/10.1145/3460082

[78] Shufang Zhu, Geguang Pu, andMoshe Y Vardi. [n. d.]. First-Order vs. Second-Order Encodings for LTLf-to-Automata.
([n. d.]).

, Vol. 1, No. 1, Article . Publication date: April 2025.

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.1109/CVPR.2017.330
https://doi.org/10.1109/CVPR.2017.330
https://doi.org/10.1109/ICIP40778.2020.9190771
https://doi.org/10.1109/ICIP40778.2020.9190771
https://doi.org/10.1109/ICCV.2017.121
https://doi.org/10.1109/ICCV.2017.121
https://doi.org/10.1145/3460082

	Abstract
	1 Introduction
	2 Background
	2.1 Scene Graph Generation
	2.2 Linear Temporal Logic
	2.3 Scene Graph for Safety Monitoring

	3 Expressivenes Required to Encode the Driving Code
	4 Approach
	4.1 Language Syntax and Basic Semantics
	4.2 Symbolic Entities
	4.3 Property Encoding Patterns
	4.4 Limitations

	5 Implementation
	5.1 Optimizations

	6 Study
	6.1 RQ#1: Successful encoding of scene flow properties
	6.2 RQ#2: Monitoring NHTSA Scenarios
	6.3 RQ#3: Monitoring AVs for scene flow properties
	6.4 RQ#4: Efficiency for Runtime Monitoring
	6.5 Threats to Validity

	7 Related Work
	7.1 Safety Property Specification
	7.2 Safety Monitors for Autonomous Systems

	8 Beyond Autonomous Vehicles and Driving Properties
	9 Conclusion
	10 Data Availability
	References

