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ABSTRACT
Deep Neural Networks (DNNs) that process images are being

widely used for many safety-critical tasks, from autonomous vehi-
cles to medical diagnosis. Currently, DNN correctness properties
are defined at the pixel level over the entire input. Such properties
are useful to expose system failures related to sensor noise or ad-
versarial attacks, but they cannot capture features that are relevant
to domain-specific entities and reflect richer types of behaviors. To
overcome this limitation, we envision the specification of properties
based on the entities that may be present in image input, capturing
their semantics and how they change. Creating such properties
today is difficult as it requires determining where the entities ap-
pear in images, defining how each entity can change, and writing a
specification that is compatible with each particular V&V client. We
introduce an initial framework structured around those challenges
to assist in the generation of Domain-specific Entity-based proper-
ties automatically by leveraging object detection models to identify
entities in images and creating properties based on entity features.
Our feasibility study provides initial evidence that the new prop-
erties can uncover interesting system failures, such as changes in
skin color can modify the output of a gender classification network.
We conclude by analyzing the framework potential to implement
the vision and by outlining directions for future work.
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• Software and its engineering→ Software verification and
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1 INTRODUCTION
The increasing capability of DNN to synthesize accurate im-

plementations for challenging problems has led to their deploy-
ment in high-consequence domains, such as airport security screen-
ing [24], medical diagnosis [36], US criminal justice system [38], or
autonomous systems [3, 4, 19]. For such domains where failures
can lead to significant consequences, it is necessary to check the
extent to which a system satisfies its intended properties.

To address this need, researchers have developed a body of
DNN validation and verification (V&V) techniques. Since the sem-
inal Reluplex paper [15] that adapted SMT-based verification to
reason about DNNs to check for property satisfaction, dozens of
DNN verifiers have been developed, e.g., [8, 34, 37, 41]. Within
the space of validation techniques, falsifiers such as adversarial at-
tacks [10, 18, 20, 31, 32] have been developed to quickly find counter
example to DNN robustness properties. In addition, many testing
approaches have been introduced [42], among those, structurally-
driven techniques [23, 26, 33] have been developed to generate
inputs aimed at satisfying a DNN coverage criteria, while model-
driven have emerged to generate inputs better suited for a particular
domain [7, 27, 45].

In spite of the noticeable progress in V&V techniques for
DNNs, the properties targeted have remained mostly limited
to pixel constraints and applied to the whole input space.
Consider a self-driving vehicle governed by a DNN that consumes
sensed images and produces a steering angle for the vehicle. One
could check a reachability property like “independent of the input
image the steering angle should not exceed a given threshold". Now
consider a DNN consuming photos and detecting if there are people
or not. A robustness property for such DNN may state that “small
variations in image pixel values should not alter the classification".
These properties are appealing because they can be easily defined
over the whole input and applied to all images in a dataset, and they
can assess whether the DNN is resilient to sensor noise, variation
in lighting, or adversarial attacks.

Many DNN failures, however, are caused by the violation
of properties relevant to specific regions of an input associ-
ated with domain-specific entities. For instance, in the context
of self-driving vehicles, recent fatal crashes have involved image
entities such as light-colored trucks [1] or shaded road-barriers [21].
In such cases, being able to specify properties like “independent of
the vehicle color, the steering angle should remain the same" would
have increased the likelihood that such failing behavior is exposed
before deployment. Some works have explored entity-based proper-
ties, focusing on signs [17, 43]. However, these approaches rely on
manual entity detection, which can be time-consuming and error-
prone, only detect a limited set of entity types, have been applied
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to just one domain, or do not broadly generalize to different change
types. Despite these challenges, the specification of entity-based
properties can be valuable across many domains. For example, in
the context of fairness, several systems have been found to be bi-
ased toward certain skin colors, such as the COMPAS system, used
by the U.S. courts to predict the tendency of a convicted criminal
to re-offend, which has been shown to predict recidivism more
frequently for black offenders than white offenders [13]. Similarly,
Google Vision Cloud labeled a picture of a dark-skinned arm hold-
ing a thermometer as a “gun”, whereas a light-skinned arm holding
the same thermometer was labeled as an “electronic device” [22],
and Google Photos mislabeled a picture of two African Americans
as “gorilas” [6]. Being able to specify a property like “independent of
changes to the skin color in an image, the output class of the network
should remain the same” (explored in Section 4), would have enabled
existing V&V tools to detect such failures.

While the cases mentioned above involve entity color changes,
they only represent a fraction of the possible transformations that
entities can undergo in real-world scenarios. For example, let us
imagine that we are validating a DNN that classifies people and
cars. Changes in style or shape would allow us to define interesting
properties like “independent of the car’s model, the predicted class
should not change” or “regardless of straight or curly hairstyle, the
predicted class should not change”. Further, changing the composition
of an image, e.g., the location or pose of an entity, would allow us
to define richer properties like “independent of the location and pose
of a person on the sidewalk, the predicted class should not change".

VISION. Our vision is to enable the specification of Domain-
specific Entity-based (DSEB) properties that capture the semantics
of the entities in the world and how they can change. These prop-
erties would enable different V&V clients to explore the wide space
of entity variations and check if DNNs are invariant to changes
that may occur in the real world, thus assessing their robustness
and generalization capabilities. Consequently, stronger guarantees
will ensure that models in production perform well on unseen data.
Ultimately, the goal is to deploy more reliable and trustworthy AI
systems that can be used in safety-critical applications, making
them more useful and beneficial to society.

2 RESEARCH CHALLENGES
To specify DSEB properties, like the ones stated above, to assess

DNN’s behavior, uncover serious DNN misbehaviors, and deploy
more reliable AI systems, engineers face significant challenges.

(1) Entity identification. First, they must identify the region cor-
responding to a target entity, such as a car in a road scene or hair
in the image of a person. In principle, this could be performed man-
ually but segmenting a target entity in complex inputs like images
is a difficult and costly endeavor. For instance, a human-annotated
segmentation can require 5,400 seconds [28], and this identification
must be performed for every image since the entity’s location and
appearance can vary across images.
(2) Entity transformation. Second, engineers must specify how
that entity can change. There are countless ways that entities might
change, following previous examples, style changes could be per-
formed by modifying the make and model of a car, or the hairstyle
of a person. Additionally, composition changes could be achieved,

by changing the location and pose of cars and people. Nonetheless,
these entity transformations are not trivial to automate and would
require manual effort, e.g., using photo editing software.
(3) Encoding. Lastly, writing specifications is a difficult task, as
it requires defining the behavior of a system in a formal language
that can be processed by different V&V clients, that have diverse
input types and capabilities. For instance, verifiers tend to focus on
proving that a property specification holds for a DNN, while valida-
tors, such as testing methods or falsifiers, can only prove a property
is false by finding a counter example. On the other hand, while
verifiers have limited support for network operations, falsifiers are
less restrictive but require the network to be differentiable, whereas
testing can support any input type. Thus, creating specifications
that work with a range V&V clients is challenging.

3 FRAMEWORK FOR REALIZING VISION
In this section, we formally define a correctness problem and

sketch a framework for supporting the specification of Entity-based
properties with Domain-specific semantics that are amenable to
automated verification and validation.

3.1 Correctness problem
A correctness problem is a pair, 𝜓 = ⟨N , 𝜙⟩, of a DNN, N :

R𝑛 → R𝑚 , and a property specification 𝜙 . The property specifica-
tion defines constraints over the inputs and outputs of N . We fur-
ther differentiate between constraints over only inputs, 𝜙X , which
we refer to as the pre-condition, and constraints over both inputs
and outputs or only outputs, 𝜙Y , which we refer to as the post-
condition. Verification and validation techniques seek to check
whether ∀𝒙 ∈ R𝑛 : 𝜙X (𝑥) → 𝜙Y (N (𝑥)) is true or false.

3.2 Overview
An outline of the envisioned framework, Domain-specific Entity-

Based Property Generation (DSEBPropGen), is depicted in Fig. 1.
For a network under analysis, N : R𝑛 → R𝑚 , DSEBPropGen takes
an image, 𝑥0, and outputs a correctness problem. DSEBPropGen has
three main components, designed to solve each of the challenges.

First, to address the challenge of identifying entities, Entity Iden-
tification automatically detects a set of entity types, Σ, in the input,
𝑥0, using a user-configured entity detector. For each instance, 𝑖 , of
an entity type, 𝜎 ∈ Σ, it returns a set of pixels, 𝑅𝜎

𝑖
⊆ [1, 𝑛], associ-

ated with that entity. For example, the locations of the pixels in a
car, face, or hair within an image. Second, to specify how an entity
can vary in terms of color, style, location, etc., Entity Transformation
applies a set of user-configurable functions,𝑇𝜎 : X×𝑃 (N) → 𝑃 (X),
which map an input, 𝑥0 ∈ X, and a detected entity, 𝑅𝜎

𝑖
, to a set

that defines the space of transformed inputs from 𝑥0. For instance,
it permits the pixels associated with a face to vary within a color
range corresponding to human skin tones. Lastly, to overcome the
difficulty of writing specifications, Encoding combines the gener-
ated constraints with a user-specified post-condition and expresses
them in a form compatible with existing V&V clients. We describe
each of these steps in more detail in the next few sections.

3.3 Entity Identification
The goal of this step is to detect within a given input the parts

of that input that correspond to a semantically relevant entity. To
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Figure 1: Approach overview.

accomplish this, we propose to leverage automated entity detectors.
In principle, any automated algorithm capable of detecting a target
entity type, 𝜎 , with sufficient accuracy can be employed as long as
its output can be transformed to 𝑅𝜎 , the set of pixels predicted to
contain the target entity. In practice, state-of-the-art pre-trained
models for semantic segmentation, e.g., Detectron2 [40], are a scal-
able and broadly applicable solution. These models also provide
mechanisms to control the quality of segmentation, by computing
an estimate of their uncertainty, and segmenting instances only if
the predicted label’s confidence exceeds a certain threshold. For
instance, Detectron2 can be used to automatically identify differ-
ent objects such as cars, trucks, and bicycles, above a confidence
threshold, e.g. 0.75 or 0.9 out of 1.

More formally, Entity Identification takes in an input 𝑥0 and
produces a set 𝑅Σ, such that for each entity type 𝜎 ∈ Σ, 𝑅𝜎 ⊆ 𝑅Σ

identifies the pixels in 𝑥0 that correspond to entity type 𝜎 . Multiple
entities of a single type may be detected in an input, which we
disambiguate with the notation 𝑅𝜎

𝑖
⊆ 𝑅𝜎 , where 𝑖 ∈ [1, 𝑛] indicates

an id for the entity. We expect that the set of entity types to be
identified, Σ could be configured by the user to adjust to their needs.

3.4 Entity Transformation
The goal of this step is to take 𝑥0 and the entities identified

by Entity Identification and transform 𝑥0 to a set of inputs that
allow domain-specific changes to the identified entities. Entity
Transformation takes an input 𝑥0 and a set of identified entities,
{𝑅𝜎

𝑖
| 𝜎 ∈ Σ ∧ 𝑖 ∈ [1, 𝑛]}, and generates, for each entity type, 𝜎 , a

transformation defining the set of inputs that are transformed from
𝑥0 by a user-configured entity-specific transformation function,
𝑇𝜎 : X × 𝑃 (N) → 𝑃 (X). The rest of the input that has not been
transformed, 𝑅𝑇 , remains invariant. In this work, we use a subscript
to differentiate between different transformations, e.g., 𝑇𝜎

𝑐𝑜𝑙𝑜𝑟
is a

function that allows an entity to vary in color in an image, like car
color changes in [39]. This transformation can be implemented by
adjusting the pixel values to tint them with a desired color. How-
ever, more complex transformations such as changing the model of
a car would require sophisticated ways of changing the pixel values
as we may not only need to change the pixels within the entity, but
also surrounding pixels, e.g. if we want to enlarge the entity.

3.5 Encoding
The goal of this step is to take the input sets generated by Entity

Transformation and encode them in a form supported by V&V
clients. Encoding takes in a transformed set of inputs, 𝑇 (𝑥0) ⊆ X,
and a user-configured post-condition specified as a predicate over
network outputs 𝜙Y : Y → {⊥,⊤} and outputs a property and

network that can be checked by existing V&V tools. The post-
condition specifies constraints over the network output, such as the
predicted class remaining invariant across the generalized inputs,
or the steering angle remaining within some specified range.

The predicate for the transformed input set can be represented
as a function Q : X × 𝑃 (N) × Γ → X, where Γ is a parameter space
to the function. The function Q can be encoded as a neural network
and can be used as a prefix P to the original neural network N , to
modify inputs within entity regions with the color transformation.
For example for 𝑇𝜎

𝑐𝑜𝑙𝑜𝑟
, we created a prefix that takes in a color in

CMYK format and an intensity value, and modifies the image by
changing the entity’s color. Using such network prefix as encoding
enable the expression of non-linear functions and the flexibility
to work with many V&V clients. Users could utilize pre-defined
transformation encodings or create new ones. Developing new
encodings requires an understanding of the downstream target V&V
clients since they have different capabilities. For instance, testing
techniques can handle very general network structures, therefore
any function can be encoded. On the other hand, property-driven
falsifiers require networks comprised of differentiable functions,
and verifiers often are limited to a small set of activation functions.

4 FEASIBILITY STUDY
The goal of this study is to explore what it takes to instantiate

DSEBPropGen to automatically generate DSEB properties, and the
insights those properties can provide in the V&V process.

4.1 Study Setup
Target DNN. We explored the application of DSEBPropGen

in the domain of gender classification from face images using a
pre-trained ResNet34 [12] provided by FairFace [14].
Properties. We were interested in checking 2 properties: (1) “Gen-
der is independent of skin color", and (2) “Gender is independent of
hair color". We generated 8,417 properties of each type based on
high-quality filtered images from the FairFace dataset.

4.2 Instatiating DSEBPropGen
Identification. We integrated two semantic segmentation models
into our prototype. First, Detectron2 [40] trained on LVIS [11],
which recognizes over 1200 entity types such as cars, signs, fruits,
and appliances. Second, MobileNetV2_unet [2] trained to process
headshots, capable of segmenting face, hair, and background. By
leveraging the extensive entity set of the first segmentation model,
DSEBPropGen can be applied across many domains, while the
second model allows for customization to specific domains.
Transformation. We defined a color transformation function,
which we applied to two entity types, hair and face, and obtained
two different DSEB property types. This transformation includes



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Felipe Toledo, David Shriver, Sebastian Elbaum, and Matthew B. Dwyer

(a) Face properties: face color change within a skin-tone. (b) Hair properties: hair color change.

Figure 2: Counter-examples found by falsifiers at the bottom, with their original image above.

dependencies between pixels so that the color of the entity can
change as a whole. Specifically:

𝑇𝜎Δ (𝑥0, 𝑅
𝜎 ) = {𝑥 ∈ X | 𝑥 = 𝑐𝑜𝑙𝑜𝑟 (𝑥0, 𝑅

𝜎 , 𝛿) ∧ 𝛿 ∈ Δ}
where 𝛿 = (𝐶,𝑀,𝑌, 𝐾,𝐴) and 𝑐𝑜𝑙𝑜𝑟 is a function that mixes the
color of the pixels in 𝑅𝜎 in 𝑥0 with the color specified by 𝐶 , 𝑀 ,
𝑌 , and 𝐾 by an intensity factor 𝐴, while leaving the rest of 𝑥0
unchanged. The set Δ can be parameterized to specify different
color spaces, which may be useful for different entity types.

We chose different color spaces for the hair and face transfor-
mations. For the hair properties, we did not restrict any of the C,
M, Y, or K channels since the hair can be of any color. For the face
properties, we restricted the channels to represent a set of estimated
skin-tone color values [5]. For both property types, we limited the
parameter 𝐴 to not end up having a solid color for the entity.
Encoding.We encoded the color transformation into a DNN prefix,
which creates a mask from the input dimensions of the entity and
recolors only the pixels of the entity, leaving the rest of the inputs
unaltered. We then saved this network in ONNX [25] format and
created the property specifications using DNNP [29] format, to
make them amenable for use by DNNF [30].
V&V Client. After generating the properties, we used falsification
to help us judge the robustness of the target DNN and selected
three falsifiers included in DNNF. We chose to use Cleverhans Fast
Gradient Method (FGM) [10], Basic Iterative Method (BIM), and
Projected Gradient Descent (PGD) [20]. The first 2 falsifiers were
run once since they are deterministic, while the non-deterministic
PGD method was run repeatedly for 5 minutes.

4.3 V&V of Target Network
For our study, where we have 8,417 seed images for generating

DSEB properties, generating human annotations would be cost-
prohibitive – ∼500 person-days [28]. In contrast, DSEBPropGen
can generate DSEB properties for all images in under 30 minutes.

After attempting to falsify all the properties, we found 437 (5.19%)
and 502 (5.97%) unique face and hair violations respectively using
the 3 falsifiers, indicating that the network is brittle to color changes
in some portions of the input. Examples of face and hair violations
can be seen in Fig 2a and Fig 2b respectively. In the third column of
Fig. 2a we can observe that the face region was segmented correctly,
and the color transformation was applied uniformly to all the face
pixels, which created a smooth and consistent change in skin tone.
Note that the new color falls within the range of natural skin tones,
thereby generating a realistic counter-example. Likewise, in the
second column of Fig. 2b, we can see that the hair pixels were also
detected appropriately, and the resulting color transformation on

the hair, which is tinted with green, appears natural. These results
highlight the potential to define and check new types of properties
that target different entities and go beyond the classical robustness
defined over the entire input space.

5 PROGRESS MADE AND FUTUREWORK
We now contrast the vision with the proposed framework to

point out gaps that need to be addressed to generate different DSEB
properties that enable V&V of a broader range of DNNs behaviors,
and enable its application at a system level.

(1) Detection. Our vision relies on automatic detection systems
to identify entities on which to specify DSEB properties. As dis-
cussed in 3.3 and as confirmed by our preliminary study, current
segmentation models are fast and capable of recognizing a variety
of entities with confidence. These systems, however, can sometimes
mispredict an entity or segment it incorrectly. Such errors have
different implications depending on the V&V client. For valida-
tion techniques, such errors would result in false positives. For a
verifier that determines that a property holds, such errors would
provide false guarantees. Thus, devising mechanisms that account
for such identification errors is going to be required. Furthermore,
the sophistication and accuracy of such systems would also have
to account for sequences of images [44].
(2) Transformations. In our study, we implemented a color trans-
formation that revealed interesting system failures. For example,
changes in the skin or hair color that should not modify the net-
work’s output were found to do so. However, more complex trans-
formations like changing the model of a car, or the haircut style
would require more sophisticated transformations. Recent advances
in generative models [9, 16] could help to automate these types of
changes, and some efforts [7, 35] have already used them over the
entire input space for validating DNN properties. Adapting them to
work at the entity level has the potential to enable numerous style
transformations. However, even seemingly basic transformations
like removing entities remain extremely challenging, as filling in the
resulting gaps is a difficult task [39]. Furthermore, transformations
that operate consistently across images are not yet supported.
(3) Encoding. Using a network prefix to encode transformations
can provide flexibility for specifying non-linear changes, and in-
crease the usability of the properties by V&V tools. Nevertheless,
creating the prefix currently requires either manual encoding, as we
did for the color properties, or either training or finding off-the-shelf
models that can handle the desired transformations. Finding ways
to further automate this process, or add support to encode broader
types of entity transformations remains a significant challenge.
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