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Abstract— With the increased adoption of autonomous vehicles
comes the need to ensure they reliably follow safe driving properties.
Formally specifying and monitoring such properties is challenging
because of the semantic mismatch between the high-level properties
(e.g., assertions on spatial relationships between the ego vehicle and
other entities in a road scene) and the sensed inputs of the vehicles
(e.g., raw pixels). For this reason, existing monitoring methods are
applicable in limited simulation settings where the ground-truth
spatial relationships are available. To bridge this gap we investigate
the use of Vision-Language Models (VLMs) for extracting spatial
relationships from real images of driving scenes. Towards this
goal, we automated the process to extract triplets of the form
<subject, relation, ego> from real image datasets such as nuScenes,
Waymo, and KITTI, to create DriST, a dataset of road-scene images
annotated with corresponding triplets. We use DriST to evaluate
the spatial reasoning capabilities of state-of-the-art VLMs in the
driving domain. Our experiments show that, while standard VLMs
have limited capability on this task, their performance measured
using F1 score is significantly improved by fine-tuning from 0.56 to
0.93, showing the utility of DriST. We then incorporate the improved
VLM into monitors of safety properties specified in formal temporal
logic. The study shows the potential of the approach to detect most
violations (27 out of 34) found with ground-truth data, and just four
instances of false positives. We make our dataset, evaluation, and
trained VLMs available at https://github.com/less-lab-uva/DriST.

I. INTRODUCTION

The growing trend towards deploying autonomous driving
systems (ADSs) on public roads has created an urgent need for
developing methods to ensure the reliability of such systems. Exist-
ing systems are known to have unpredictable and risky behaviors
that can lead to adverse outcomes, including loss of human and
animal life [1], [2], [3], [4], [5]. While these systems are typically
extensively validated through testing in simulation and in the
field [6], [7], monitoring formal properties can offer a complemen-
tary approach to offer formal assurances [8], [9]. The idea is to first
specify desired, safe system behaviors in a suitable formalism such
as linear temporal logic on finite traces (LTLf ) [10] and then auto-
matically translate them into monitors that can be used off-line, to
check or retrieve streams of data collected during past operation, or
on-line to check or enforce properties of a system during operation.
Driving Example. Many driving rules constitute informal
specifications for ADSs. These properties typically refer to spatial
relationships between entities in a road scene. Consider an ego
vehicle equipped with a camera that captures images such as
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[(vehicle, within25m, ego),
(vehicle, leftOf, ego),

(vehicle, within25m, ego),
(vehicle, rightOf, ego),

…
(vehicle, inFrontOf, ego),

(vehicle, between25-40m, ego)]
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LTLf Property:

G( <vehicle, within25m, ego> ∧  egoSpeed ≥  25 mph  ∧  
       X (<vehicle, within25m, ego> ∧ egoSpeed ≥ 25 mph) → X isBraking)

Fig. 1: LTLf formula of ADS safety property (G, globally, and X,
next, are LTLf operators); and image with ground-truth triplets, en-
coding spatial relationships between ego car and objects in a scene.

those shown in Figure 1. This vehicle must satisfy the following
safety property to ensure reasonable distance to other vehicles:

“If there are any vehicles ahead within 25m of ego and ego speed
is greater or equal than 25 mph for two consecutive time steps,
then ego acceleration should be negative (braking) in the second
time step”. This property is formally specified in linear temporal
logic at the top of Figure 1.
Monitoring Challenge. A fundamental challenge in using formal
reasoning for ADSs is the semantic gap between the sensor inputs
(such as raw pixels in images collected with the cameras) and
the high-level predicates, encoding spatial relationships between
objects in a scene as in the example above. Existing monitoring
works [8], [9] side-step the problem by assuming that ground-truth
information about the spatial relationships (the precise pose of all
other vehicles) is available for evaluating the semantic predicates.
As a result, they are only applicable during simulation testing
where it is possible to access the ground-truth but they cannot be
deployed on real data streams collected from field operation.
Proposal. To address the challenge, we explore the use of Vision-
Language Models (VLMs) for extracting spatial relationships
from sensor inputs on driving scenes. VLMs [11] are powerful
models trained on massive amounts of images and textual data and
can be queried on vision and language modalities. In this initial
exploration of VLMs viability to support monitoring, we aim to
capture the spatial relationships found in images as triplets of the
form <subject, relation, ego>. Figure 1 shows an image from the
Waymo dataset accompanied by such ground-truth triplets where
the intended property precondition holds for at least one vehicle.

Figure 2 gives an overview of the paper, highlighting our
approach and three key contributions.

1) DriST (Driving Scenes with Triplets) Dataset. Starting
with widely available autonomous driving datasets (nuScenes [12],
Waymo [13], and KITTI [14]) containing driving scenes along
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Fig. 2: Overview of paper contributions: (1) DriST dataset with images from nuScenes, Waymo, and KITTI, annotated with triplets;
(2) Evaluation of state-of the-art VLMs on DriST dataset using four query modes and producing heatmaps summarizing VLMs
performance; (3) Monitoring of temporal logic properties with a VLM for evaluating triplets.

with 3D bounding box annotations and various meta-data, we
built a dataset containing driving scenes annotated with spatial
relationships. This process entailed developing transforms to map
the original data to a standard coordinate frame based on ego,
removing occlusions, and extracting triplets from the image. This
dataset can be used to evaluate spatial reasoning of VLMs and
also to finetune and improve VLMs for autonomous driving.

2) Evaluation of VLMs. Using the DriST dataset and four
prompting strategies, we investigate the limitations of eight
state-of-the-art VLMs for spatial reasoning. We also demonstrate
the potential for improved performance through fine-tuning,
raising the F1 values for a chosen model from 0.6 to 0.93.

3) Monitoring Safety Properties. We integrate the best
performing finetuned VLM from the evaluation into monitors
for safety properties specified in linear temporal logic. We
then assess their performance over 199 Waymo sequences
containing more than 39k frames. The results show that the
monitors were able to find a total of 27 out of 34 violations. We
make our implementations of the 3 contributions available at
https://github.com/less-lab-uva/DriST

II. RELATED WORK

Visual Language Models (VLMs) [11] possess a joint under-
standing of both visual and textual information enabling multiple
vision-language tasks. This is an active area of research with a
plethora of models [15], [16], [17], [18], [19], [20], [21], [22],
[23], with increasing interest in spatially-aware models [24], [25].
Recent work that is close to our dataset creation contribution [26]
presents a large, diverse, and spatially aware dataset to pre-train
models for multi-turn question answering. However, this dataset is
not yet publicly available. Unlike this work, DriST is specifically
curated to detect spatial relationship triplets in road scenes.

Our work is also related to scene-graph (SG) generation [27].
Although we do not build scene graphs explicitly, our proposed
triplets can be assembled such graphs. Recent works [28], [29],

[30] investigate how to use VLMs to generate scene graphs.
Notably, the work in [30] employs a VLM to transform images
into a sequence of relation-aware tokens and convert them into
scene graphs. We use a different methodology to extract SGs from
images, which consists of asking VLMs to generate a list of all the
triplets in the image and then using these triplets to check safety
properties via monitors. Unlike [30], we evaluate a wider range
of VLMs, focus on road scenes, and use it as a part of a monitor.

A survey [31] categorizes monitoring systems based on how
they are integrated with the perception pipeline. Among the
listed categories, we focus on the one that inspects inputs and
validates outputs, where monitors operate independently of the
inner-workings of the perception system.

Several approaches have been introduced to monitor image
streams. The work in [32] proposes a monitor that checks
properties defined in Timed Quality Temporal Logic (TQTL)
over bounding boxes produced by a perception pipeline. Similarly
Anderson et al. [33] proposes Spatial Regular Expressions (SpREs)
as a querying language for bounding boxes pattern matching
over perception streams containing spatial and temporal data.
Nonetheless, the spatial relationships in both works are constrained
to the 2D plane, limiting the expressiveness of these properties to
measurements of bounding box overlap, and rely on the perception
pipeline’s output, so faults in the pipeline also limit the monitor’s
effectiveness. Elhafsi et al. [34] also use bounding boxes to
describe a scene to an LLM to detect semantic anomalies in robots.
However, it does not support the monitoring of temporal-logic
safety properties. In contrast, the approach in [8] builds SG with
3D spatial relationships as abstractions of the images, enabling the
monitoring of Linear Temporal Logic (LTL) properties like the
ones in the VA driving manual [35]. However, it assumes that the
SGs are made available by a simulator, limiting its applicability in
real-world scenarios. In this work, we leverage VLMs to extract
SGs from real images and use a monitoring framework, similar
to the one in [8], to check LTL properties on real world scenarios.

https://github.com/less-lab-uva/DriST


III. THE DRIST DATASET

The DriST dataset contains images and their corresponding
relationship triplets. This section outlines the triplets format, the
generation procedure, and the resulting dataset.

A. Scope of Road Scenes Triplets

A triplet of the form <subject, relation, ego> captures a
single spatial relationship between an object and the ego vehicle,
providing a precise description of how the two entities are
positioned relative to each other.

The list of potential subjects and relations has a long-tail
distribution with many rare instances. In this work, we focus on
the head of that distribution. That is, we prioritize entities and
relations frequently found in existing datasets and related to safety
driving requirements. More specifically, we focus on three types
of subjects: vehicles, persons, and bicycles. This scope also helps
us to maintain compatibility across datasets; for instance, while
nuScenes include a wider variety of entity types, Waymo only
provides labels for the three subjects mentioned above.

We also focus on six relations that capture critical spatial
interactions with the ego vehicle, organized into two categories:
relative position and relative distance.

• Relative position describe the lateral positioning of entities
within the ego vehicle’s field of view, which is divided into
three equal regions—left of, in front of, and right of the ego.

• Relative distance captures the proximity of entities to the
ego vehicle, categorized into three ranges: within 25 meters,
between 25 and 40 meters, and between 40 and 60 meters.
These ranges correspond to safe braking distances when
traveling at speeds of 25, 35, and 45 miles per hour [35],
respectively, reflecting essential safety considerations.

We consider these subjects and relations to be sufficient to
initially assess the potential of VLMs to capture critical spatial
interactions in driving environments. However, we acknowledge
their limitations such as not accounting for the road layout or the
traffic signals, all of which influence the ego vehicle’s behavior.
Future work will focus on extending the dataset to include these
elements. These enhancements will allow for defining and monitor-
ing more complex properties, thereby supporting the evaluation of
a wider range of safety behaviors in autonomous driving contexts.

B. Process for Extracting Triplets

Autonomous driving datasets such as nuScenes, Waymo, and
KITTI contain sensor data (images, LiDAR) accompanied by 3D
annotations for the entities in each scene. However, none of them
include annotations of spatial relationships between entities and
the ego vehicle. As depicted in Fig 2 (1), to generate triplets from
the 3D annotations in each dataset, we developed an automated
process that enables us to represent each scene in a common coor-
dinate frame, perform necessary occlusion filtering, extract ground
truth scene graphs as list of triplets, and associate a bounding box
to each subject, to localize it in the image. We share the code in our
repository to enable the application of this process to other datasets.
Standard Coordinate System. Each dataset uses a unique
coordinate system for 3D bounding boxes, often based on sensor
placement or proprietary conventions. To unify these diverse
annotations, we convert all 3D bounding boxes to a common

North-East-Up (NEU) coordinate system based on the right-hand
rule. The origin of this coordinate system is set at the ego vehicle’s
center, allowing a consistent spatial reference across all scenes.
Occlusion Filter. Spatial reasoning in autonomous driving camera
scenes must distinguish visible objects. To determine whether
an entity is visible we use ray tracing from the ego vehicle to
each entity in the scene. If a ray intersects with any other entity’s
bounding box, we mark the target entity as occluded and remove
it from the list of entities in the scene.
Triplets Extraction. Using the field of view of the camera and
a distance threshold of 60 meters (red cone in Fig 2-1), we
prune entities whose centroids fall outside this area. We then use
the sections of the cone, parameterized based on the relations
definitions, to determine the distance and position of the entity
relative to ego. For example, in Fig 2-1, there is a vehicle (white
van) on the left and within 25m, as we can see that it is in the
left bottom sub-area of the red cone. There is also another vehicle
(white truck) on the right and within 25m as well, as it is depicted
in the right bottom sub-area.

Finally, we associate each entity in the scene with its
corresponding bounding box, representing each data point as an
image, a list of triplets, and the bounding boxes. The bounding box
provides two key advantages: first, it enables spatial grounding of
the triplets, allowing visual validation of each entity’s position and
relationship in the image. Second, it offers additional contextual
cues that aid in complex spatial reasoning and support advanced
query formulation, as outlined in the next section.

C. The DriST dataset

DriST dataset contains 209,590 scenes labeled with triplets,
with over 4 entities (2.9 vehicles, 1.6 persons, 0.06 bicycles) and
8 triplets per image on average, offering substantial diversity in
driving scenarios. The most common relationships for position is
in-front and for distance is between 40-60m, but all relationships
appear on average of at least 1.2 times per image. This balanced
distribution, combined with the diverse sensor configurations
and camera resolutions in the nuScenes, Waymo, and KITTI
datasets, provide us with a range of typical driving elements and
interactions and realistic spatial contexts to study the potential of
VLMs to help reason in this domain.

IV. EVALUATING VLMS ON THE DRIST DATASET

To assess the effectiveness of VLMs in accurately capturing
triplet relationships within autonomous driving scenes, we
evaluate eight state-of-the-art models and four query strategies.
We randomly sampled 300 images from the DriST test split
for each of the three datasets, resulting in a total of 900 images
for evaluation. Due to the operational cost of querying GPT-4
Turbo, for this model we further sampled 30 images from each
300-image subset, totaling 90 images for its evaluation. We made
our code available at https://github.com/less-lab-uva/DriST

A. Models

We selected a range of models that represent distinct configura-
tions in both language modeling and vision encoding. We include
GPT-4 Turbo (GPT-4-T) [19] as a reference for top-tier multimodal
performance, setting a high baseline for model comparison, and
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RoadScene2Vec (RS2V) [36] as a scene graph generator for the
driving domain. As a foundational model, LLaVA 1.5 (L1.5) [16]
combines the popular CLIP [15] image encoder with Llama 2 [37].
We also include LLaVA 1.6 [38] Mistral (L1.6-Mis) and LLaVA
1.6 Vicuna (L1.6-Vic), both designed to handle higher image
resolutions and fine-tuned on a more diverse dataset than LLaVA
1.5, while leveraging the latest advancements in their respective
language models. Recognizing the importance of spatially-aware
models, SpaceLLaVA [25] has been fine-tuned on spatial data
with the objective of achieving better spatial understanding.
Further diversity is introduced with PaliGemma [17], which
leverages SigLIP [39] as an alternative vision encoder, potentially
broadening the range of visual contexts the model can process.
Lastly, the Cambrian Phi 3 (C-Phi3) [18] and Llama 3 [40] models
incorporate the Spatial Vision Aggregator (SVA) to combine
features from multiple vision encoders, thereby enabling more
nuanced spatial reasoning through feature aggregation.

To enhance the spatial reasoning capabilities of VLMs
specifically for autonomous driving scenarios, we experimented
with using the DriST dataset to fine-tune and trained LoRAs [41]
on LLaVA 1.5 (L1.5-FT, L1.5-L) in different query modes. We
used 75% of the dataset for training, 5% for validation, and
the remaining 20% for testing. While LLaVA 1.5 is somewhat
dated, its repository benefits from extensive community support,
and includes reliable scripts and documentation for efficient
fine-tuning and LoRA training on GPUs. This model is also
cost-effective; we fine-tuned our models usign 8 A40 GPUs,
resulting in up to 3x improvements over baseline models.

B. Query Modes

To evaluate how well each VLM captures spatial relationships,
we designed four distinct query modes to extract triplets. These
modes represent progressively granular methods for prompting
the models. Examples of all query modes are provided in our
repository.
Mode 1 involves prompting the VLM with a general request for
all spatial triplets in an image. We provide context regarding the
entities and relationships of interest and specify that relationships
should be expressed relative to the ego vehicle. The VLM then
outputs a variable-length list of triplets corresponding to the
entities and their relationships identified within the image. This
open-ended querying mode allows us to capture the model’s
overall capacity to enumerate triplets in a driving scene, by
querying the VLM only once.
Mode 2 employs a more targeted approach, querying the VLM
with yes/no questions for each possible combination of entity
type and spatial relationship. For instance, it asks the model if
there is a vehicle in front of the ego vehicle, and how many. Each
affirmative response is used to generate a triplet, if the model
indicates that there are multiple instances, the corresponding
triplet is repeated accordingly, and added to the list of predicted
triplets. This mode constrains the VLMs to perform a more
detailed analysis of individual entity relationship pairs.
Mode 3 leverages bounding boxes to guide the VLM’s attention
to specific entities within the image. Here, one entity in the image
is highlighted with a bounding box at a time, and the VLM is
prompted to identify the triplets describing that entity’s spatial

relationships to the ego vehicle. This query mode assumes access
to bounding box information, which may be available from object
detection systems, such as Detectron2 [42], Ground DINO [43],
YOLO v11 [44], or YOLO World [45]. In our experiments, we
benchmark the VLMs capabilities in extracting the correct triplets
given a ground-truth bounding box. Although this can potentially
over-estimate the VLM capabilities, in practice, existing object
detection systems are becoming highly accurate [46].
Mode 4 combines the specificity of yes/no questions with the
targeted guidance of bounding boxes. In each query, every
bounding box and entity type, is paired with 6 yes/no questions
regarding the object’s spatial relationships to the ego vehicle (one
for each of the 6 relationships). For instance, given a bounding
box, it asks if the object in the bounding box is in front of the
ego vehicle. If the response is affirmative, the triplet is added to
the list of predicted triplets. While query-intensive, Mode 4 is
expected to reduce the likelihood of VLM errors and ensures that
only relevant relationships are examined.

C. Metrics

To quantify the performance of each VLM and query mode,
we utilize mean precision@∞, mean recall@∞ [47], and mean
F1@∞ as our primary metrics (henceforth, simply referred to
as mean precision, mean recall, and mean F1). We use @∞ rather
than a specific k-value because VLMs do not assign confidence
scores to their predicted triplets, and our goal is to evaluate
all triplets present in a scene even if they are repeated. Each
model-query combination produces a list of predicted triplets,
which we compare against a ground-truth list available in the
DriST dataset. These lists are multisets to account for instances
where the same triplet may appear multiple times within a scene,
such as multiple pedestrians located to the right of the ego vehicle.

Let Gx denote the ground-truth multiset of triplets for a given
scene x, and Vx denote the multiset of predicted triplets generated
by the VLM V for the same scene x. We use mA(t) to refer to
the count (or multiplicity) of triplet t in a multiset A. mA(t)=0
if t does not appear in multiset A.

Definition IV.1 (Intersection of multi-sets). The intersection
Gx∩Vx of multisets Gx and Vx is defined using the count m(t)
of each triplet t as,

∀t∈T . mGx∩Vx(t)=min(mGx(t),mVx(t))

where T is the set of all possible triplets.

Definition IV.2 (Mean precision and recall of VLM). Let D be
a set of images. If Gx and Vx are the ground-truth and predicted
multiset of triplets for an image x and VLM V , the mean precision
(P) and recall (R) of the VLM V with respect to D are defined as,

P=
1

|D|
∑
x∈D

|Gx∩Vx|
|Vx|

R=
1

|D|
∑
x∈D

|Gx∩Vx|
|Gx|

For a scene x, precision measures the proportion of correct
triplets among those predicted by the VLM V , while recall
measures the proportion of ground-truth triplets correctly
identified by the VLM V . The F1 score provides a harmonic mean
of precision and recall. For each model, we compute the mean
of these precision, recall, and F1 scores with respect to the test set.



Model QM Time Total K W N
C-Llama3 1 15.29 0.19 0.15 0.18 0.23
C-Phi3 1 9.85 0.26 0.31 0.26 0.21
GPT-4-T 1 5.89 0.45 0.45 0.37 0.53
L1.5 1 3.95 0.36 0.44 0.35 0.28
L1.5-FT 1 2.57 0.66 0.72 0.67 0.59
L1.5-L 1 2.58 0.65 0.73 0.66 0.55
L1.6-Mis 1 3.15 0.36 0.35 0.38 0.35
L1.6-Vic 1 3.65 0.25 0.26 0.27 0.23
PaliGemma 1 1.02 0.33 0.38 0.32 0.30
RS2V 1 0.05 0.27 0.00 0.31 0.51
SpaceLLaVA 1 11.16 0.29 0.39 0.24 0.25
C-Llama3 2 8.71 0.54 0.55 0.56 0.51
C-Phi3 2 8.20 0.52 0.51 0.56 0.49
GPT-4-T 2 108.81 0.42 0.46 0.44 0.37
L1.5 2 5.13 0.45 0.44 0.46 0.44
L1.5-FT 2 4.81 0.74 0.84 0.74 0.64
L1.5-L 2 4.84 0.67 0.69 0.69 0.61
L1.6-Mis 2 8.93 0.50 0.47 0.52 0.49
L1.6-Vic 2 8.25 0.45 0.35 0.48 0.50
PaliGemma 2 1.69 0.27 0.31 0.32 0.20
SpaceLLaVA 2 14.44 0.42 0.44 0.47 0.34
C-Llama3 3 4.59 0.47 0.45 0.40 0.55
C-Phi3 3 4.01 0.45 0.42 0.37 0.56
GPT-4-T 3 27.63 0.52 0.49 0.38 0.71
L1.5 3 9.58 0.42 0.40 0.35 0.50
L1.5-FT 3 4.30 0.89 0.87 0.90 0.88
L1.5-L 3 4.35 0.90 0.89 0.90 0.92
L1.6-Mis 3 5.31 0.45 0.44 0.39 0.53
L1.6-Vic 3 5.60 0.38 0.29 0.34 0.50
PaliGemma 3 2.82 0.39 0.35 0.36 0.47
SpaceLLaVA 3 9.39 0.30 0.26 0.30 0.33
C-Llama3 4 10.20 0.50 0.63 0.27 0.59
C-Phi3 4 9.19 0.25 0.17 0.19 0.37
GPT-4-T 4 169.72 0.61 0.59 0.46 0.78
L1.5 4 6.40 0.56 0.50 0.57 0.61
L1.5-FT 4 5.42 0.93 0.93 0.93 0.93
L1.5-L 4 5.44 0.81 0.78 0.84 0.79
L1.6-Mis 4 26.91 0.52 0.45 0.51 0.61
L1.6-Vic 4 9.72 0.55 0.50 0.54 0.63
PaliGemma 4 2.30 0.56 0.50 0.57 0.61
SpaceLLaVA 4 28.72 0.56 0.50 0.57 0.61

TABLE I: F1 scores using 4 query modes (QM) for Kitti, Waymo,
NuScenes.

D. Heatmaps

To gain insights into the VLMs’ specific strengths and
weaknesses in identifying triplets, we further evaluate each model
and query mode combination on a per-triplet basis. This analysis
generates a “heatmap” that visualizes the mean precision and
recall for each unique triplet across all scenes. We calculate the
mean precision and recall per triplet as follows

Definition IV.3 (Mean precision and recall per triplet). Let D
be a set of images, Gx denote the set of ground truth triplets
for an image x, and Vx denote the set of triplets returned by
VLM V for same image x. Let DV

t ={x∈D|mVx
(t)>0} and

DG
t = {x∈D|mGx

(t)> 0}. The mean precision Pt and mean
recall Rt of t with respect to VLM V and dataset D is defined as,

Pt=
1

|DV
t |

∑
x∈DV

t

mGx∩Vx
(t)

mVx(t)
Rt=

1

|DG
t |

∑
x∈DG

t

mGx∩Vx
(t)

mGx(t)

We compute these values offline based on a given set of images.
Note that Pt and Rt are zero if |DV

t | and |DG
t | are zero,

respectively.

E. Results

Summary. The results from our evaluation (Table I) highlight
several key insights into the performance of VLMs when using
various querying approaches to capture spatial relationships
triplets in autonomous driving scenes. An extended table with
additional information is provided in the repository. Notably, the
fine-tuned LLaVA 1.5 models achieved the highest performance
across query modes, outperforming all other models, including
GPT-4 Turbo. This outcome underscores the effectiveness
of DriST in enhancing VLMs capabilities to capture spatial
relationships for driving scenarios. Furthermore, the LoRA-trained
models—optimized for each query mode—also performed
competitively, especially in Mode 3, where LoRA-trained LLaVA
1.5 marginally outperformed the fully fine-tuned variant.

The choice of query mode significantly impacted model
performance, as observed in the total column of the results table.
The incremental improvement from Mode 1 to Mode 2, and
similarly from Mode 3 to Mode 4, suggests that structuring
the prompts differently can help the model better capture the
desired spatial triplets. Specifically, the more targeted querying
approaches used in Modes 2 and 4 lead to better identification
of spatial relationships, though they come at the expense of longer
processing times due to the increased number of queries. The
role of query mode in enhancing VLM performance points to
the potential of exploring additional querying strategies to further
optimize spatial relationship extraction.

A closer examination of the results across datasets reveals some
variability, particularly in Modes 1 and 2. The best models gener-
ally performed worse on nuScenes, with lower F1 scores compared
to KITTI and Waymo. This drop in performance likely arises from
the poorer quality of some nuScenes images, which can be blurry
or low-light, making it challenging for VLMs to accurately identify
entities and their spatial relationships. Interestingly, in Modes 3
and 4, where bounding boxes were provided, this variability across
datasets largely disappeared, with the best-performing models
achieving consistent F1 scores across all three datasets. This
suggests that in challenging visual conditions, the presence of
bounding boxes assists the VLMs by focusing their attention on
specific entities, thereby mitigating the impact of image quality.

Additionally, the poor performance of RoadScene2Vec,
particularly on KITTI where it scored an F1 of 0, further
highlights the sensitivity of some SGGs to dataset-specific camera
configurations. RoadScene2Vec’s reliance on camera information
in its configuration file means that its performance is notably
affected by differences in field of view, as KITTI images are
wider than those in nuScenes and Waymo. Consequently, Road-
Scene2Vec performed relatively better on the other two datasets.

In terms of computational efficiency, the times recorded for
each model and query mode reveal important trends. For Mode
1, RoadScene2Vec achieved the fastest times given its architecture,
but its F1 score was less than a third of the best-performing model,
suggesting a trade-off between speed and accuracy.

The fine-tuned VLM and LoRA models struck a balance be-
tween speed and F1 score, achieving both the best times and high-
est accuracy in this mode. This efficiency is likely due to the VLMs
generating concise text with minimal repetition or unnecessary



Fig. 3: Precision heatmap for LLaVA 1.5 finetuned for mode 4.

explanations, which kept generation time low. In Mode 2, despite
the 18 individual questions asked, the fine-tuned VLM and LoRA
models once again proved the fastest, as the responses only re-
quired simple yes/no answers. In contrast, other models were more
verbose in their responses, which increased generation times. In
Mode 3, Cambrian Phi3 demonstrated the fastest processing times
among all models, though its F1 score was only half that of the
top-performing fine-tuned VLM. Following Cambrian Phi3, the
fine-tuned VLM and LoRA models were also relatively fast in this
mode. Cambrian Phi3’s shorter inference times likely stem from its
smaller parameter size, which, combined with concise descriptions
of the triplets, resulted in efficient processing. Finally, in Mode 4,
the fine-tuned VLM and LoRA models once again emerged as the
fastest, providing similar advantages in processing as in Mode 2,
where concise yes/no responses minimized generation time.
Heatmaps. Fig 3 shows the heatmap for LLaVA 1.5 fine-tuned
for mode 4, as it was the best performing across VLMs and query
modes. The heatmap indicates that this VLM is not very precise
at detecting bicycles between 40 and 60 meters, but the model is
precise, and almost never misses a vehicle to the left of ego. The
value in square brackets represents the number of samples that the
triplet appeared in the prediction. In other words, it is the number
of samples over which the average was calculated, providing an
insight on how big is the sample size for each precision score.
More heatmaps for different models and query modes can be
found in our repository.

V. MONITORING SAFETY PROPERTIES WITH A VLM

Our goal is to use a VLM to evaluate temporal logic safety
properties expressed in terms of propositions (triplets) about
spatial relationships in driving scenes.

A. Building monitors

Specifying properties. We focus on properties expressed in linear
temporal logic on finite traces (LTLf ) [10], a logic commonly
used for monitoring. Let us recall our example specification in
Fig. 1: “‘If there are any vehicles ahead within 25m of ego and
ego speed is greater or equal than 25 mph for two consecutive
time steps, then ego acceleration should be negative (braking) in
the second time step”. It can be expressed as the LTLf formula
G((< vehicle,within25m, ego > ∧egoSpeed ≥ 25mph ∧ X(<
vehicle,within25m,ego>∧egoSpeed≥25mph))→X isBraking).
Here G (globally) and X (next) are standard operators in LTLf .
Evaluating propositions on images. Propositions such as
< vehicle,within25m,ego > are evaluated on sensor inputs (i.e.,

<vehicle, within25m, ego> ∧
egoSpeed ≥ 25mph

¬ <vehicle, within25m, ego> ∨
¬ egoSpeed ≥ 25mph

(¬ <vehicle, within25m, ego> ∨
¬ egoSpeed ≥ 25mph)

20

<vehicle, within25m, ego> ∧
egoSpeed ≥ 25mph ∧
isBraking

<vehicle, within25m, ego> ∧
egoSpeed ≥ 25mph ∧
¬ isBraking

True

1

Fig. 4: DFA Monitor for the LTLf Property.

images). To do that we leverage a VLM to predict the triplets in
a scene. Then, we use the list of predicted triplets to determine if
the proposition is true or false. Other propositions, such as speed
and acceleration can typically be obtained accurately from the
ADS, without the need for visual sensor data.
Monitor synthesis. The property specified above, can be auto-
matically converted to a deterministic finite automaton (DFA) that
serves as a monitor for checking whether a finite trace violates the
property [48], [8]. Figure 4 shows the DFA that was synthesized
from the formula. States 0 and 1 are accepting, meaning that
the property holds, and state 2 is a bad state, meaning that the
property is violated. The transitions of the DFA require evaluating
the propositions using the VLM or accessing ADS information.

B. Case study

This case study aims to show the effectiveness of monitors
using the best performing VLM from Sec. IV-E, L1.5-FT, to
check three safe driving properties illustrated in Table II.

Evaluation Dataset. While the VLMs evaluations in Sec. IV
used 300 images from our Waymo test set (not seen during
the VLM training), here we analyze our entire Waymo test set,
composed of 199 sequences containing over 39k images. These
sequences were collected in 3 cities: San Francisco, Mountain
View, and Phoenix, at different times of the day, containing 196
frames on average. These frames contain 67,566 vehicles, 1,698
bicycles, and 22,027 persons. We leverage the ground truth triplets
from these 199 sequences to verify the properties and compare
the violations detected in the ground truth to those identified
using the VLM’s predictions. If we take a closer look at the
properties in Table II, the first proposition is anythingWithin25m,
anythingBetween25 40m, and anythingBetween40 60m for φ1,
φ2, and φ3, respectively. These propositions are a shortname for
the disjunction between the different entities at a given range. For
example: anythingWithin25m = <vehicle,within25m,ego>∨<
bicycle,within25m,ego>∨<person,within25m,ego>.

Metrics. We present the results in terms of the following metrics:
True Violations (True Positives), property violations successfully
identified by the monitor; False Violations (False Positives),
property violations predicted by the VLM that were not actual
violations; Missed Violations (False Negatives), property violations
present in the ground truth but missed by the VLM; finally, True
Non-Violations (True Negatives), denote cases where no violation
occurred in both the ground truth and the VLM’s predictions.

Results. Table III summarizes the results. The monitors success-
fully identified 74% true violations (TP) for φ1, 78% for φ2, and
100% for φ3; while reporting 1% of false violations (FP) for φ1,
1% for φ2; and none for φ3. The low number of false violations
(FP) suggests that the monitors are precise in their predictions,



Property Definition
φ1 G(anythingWithin25m∧egoSpeed≥25mph∧X(anythingWithin25m∧egoSpeed≥25mph)→XisBraking)
φ2 G(anythingBetween25 40m∧egoSpeed≥35mph∧X(anythingBetween25 40m∧egoSpeed≥35mph)→XisBraking)
φ3 G(anythingBetween40 60m∧egoSpeed≥45mph∧X(anythingBetween40 60m∧egoSpeed≥45mph)→XisBraking)

TABLE II: Safe driving properties analyzed in the case study.

Ground Truth
Violation Non-Violation

VLM Violation

True Positives (TP)
φ1 = 14
φ2 = 7
φ3 = 6

False Positives (FP)
φ1 = 2
φ2 = 2
φ3 = 0

Not Violation

False Negatives (FN)
φ1 = 5
φ2 = 2
φ3 = 0

True Negatives (TN)
φ1 = 179
φ2 = 188
φ3 = 193

TABLE III: Case study results.

and the low number of missed violations (FN) indicates that the
monitors do not miss many entities relevant to the properties.

Furthermore, the high count of true non violations (TN) suggests
that the monitors correctly identified sequences without violations.
We note that 15/179 (8%) in φ1, 4/188 (2%) in φ2, and 4/193 (2%)
inφ3 are the cases where the speed of the ego vehicle is higher than
the threshold. For those cases, it means that the VLM accurately
predicted the relevant triplets, without leading to false violations.

Figure 5a shows an example of a true violation (TP) of φ2,
where there is a vehicle between 25m and 40m (black SUV), the
ego speed is 44 mph and the ego vehicle does not decelerate. In
contrast, Figure 5b shows an example of a missed violation (FN),
where there is a vehicle within 25m and 40m, yet the VLM did
not detect that there is one. In this case, the ground truth suggests
that the car is between 25m and 40m, while the VLM predicts
that the car is between 40m and 60m, which is not correct. This
is a subtle miss-classification from the VLM given that the car
is close to the range limit, around 40 meters.

VI. CONCLUSION

In this paper we investigated the use of VLMs for monitoring
safety properties in ADSs. We described the DriST dataset, which
was used for evaluating state-of-the-art VLMs for capturing
spatial triplets. Although out-of-the-box VLMs perform poorly
on the task, our DriST dataset can be used for model fine-tuning,
significantly improving performance. We also showcase the use of
monitors to check safety properties on real images, by leveraging
the best-performing VLM with promising results.

Future work includes two lines of work. First, we will explore
fine-tuning smaller and more cost-effective VLMs, such as
MobileVLM [49], to reduce inference costs, and thus facilitate
deployment as part of monitors in an on-line setting. Second, we
will extend our triplets to encode more general spatial relationships
and express richer set of properties, and improve the logic to
accommodate the imprecisions of sensing and VLM interpretation.
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