
APPENDIX

In this section we describe the DNN properties used in our
study.

A. FashionMNIST

The properties for Fashion MNIST consists in comparing
different pieces of clothes in a way that the difference be-
tween clothes with similar shapes are smaller that others with
different shapes. E.g. the difference between a t-shirt/top and a
shirt should be smaller than the difference between a t-shirt/top
and a sneaker. There are two types of properties:

(A) Specify that the output class must be one of the classes
being compared.

a) Property ϕA,0.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 7)) →
(|N (x)7 −N (x)6| > |N (x)7 −N (x)5|)

b) Property ϕA,1.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 6)) →
(|N (x)6 −N (x)9| > |N (x)6 −N (x)2|)

c) Property ϕA,2.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 5)) →
(|N (x)5 −N (x)8| > |N (x)5 −N (x)7|)

d) Property ϕA,3.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 4)) →
(|N (x)4 −N (x)1| > |N (x)4 −N (x)6|)

e) Property ϕA,4.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 3)) →
(|N (x)3 −N (x)7| > |N (x)3 −N (x)0|)

f) Property ϕA,5.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 9)) →
(|N (x)9 −N (x)0| > |N (x)9 −N (x)7|)

g) Property ϕA,6.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 2)) →
(|N (x)2 −N (x)1| > |N (x)2 −N (x)4|)

h) Property ϕA,7.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 5)) →
(|N (x)5 −N (x)2| > |N (x)5 −N (x)9|)

i) Property ϕA,8.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 0)) →
(|N (x)0 −N (x)8| > |N (x)0 −N (x)6|)

j) Property ϕA,9.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 1)) →
(|N (x)1 −N (x)7| > |N (x)1 −N (x)3|)

(B) Do not specify any output class.

k) Property ϕB,0.:

∀x.(x ∈ [0, 1]n) → (|N (x)7 −N (x)6| > |N (x)7 −N (x)5|)
l) Property ϕB,1.:

∀x.(x ∈ [0, 1]n) → (|N (x)6 −N (x)9| > |N (x)6 −N (x)2|)
m) Property ϕB,2.:

∀x.(x ∈ [0, 1]n) → (|N (x)5 −N (x)8| > |N (x)5 −N (x)7|)
n) Property ϕB,3.:

∀x.(x ∈ [0, 1]n) → (|N (x)4 −N (x)1| > |N (x)4 −N (x)6|)
o) Property ϕB,4.:

∀x.(x ∈ [0, 1]n) → (|N (x)3 −N (x)7| > |N (x)3 −N (x)0|)
p) Property ϕB,5.:

∀x.(x ∈ [0, 1]n) → (|N (x)7 −N (x)2| > |N (x)7 −N (x)9|)
q) Property ϕB,6.:

∀x.(x ∈ [0, 1]n) → (|N (x)6 −N (x)5| > |N (x)6 −N (x)4|)
r) Property ϕB,7.:

∀x.(x ∈ [0, 1]n) → (|N (x)5 −N (x)1| > |N (x)5 −N (x)7|)
s) Property ϕB,8.:

∀x.(x ∈ [0, 1]n) → (|N (x)4 −N (x)8| > |N (x)4 −N (x)2|)
t) Property ϕB,9.:

∀x.(x ∈ [0, 1]n) → (|N (x)3 −N (x)9| > |N (x)3 −N (x)0|)
B. DroNet

The network used for the GHPR-DroNet benchmark is
the DroNet network4 [?] for autonomous quadrotor control.
This network is based on a ResNet type architecture, with 3
residual blocks. It is comprised of 475131 neurons and 320226
parameters.

The properties for DroNet codify the desired behavior that,
if the probability for collision is low, the system should not
make sharp turns. The DroNet properties are of the form: for
all inputs, if the probability of collision is between pmin and
pmax, then the steering angle is within d degrees of 0.

a) Property ϕ0.:

∀x.((x ∈ [0, 1]n) ∧ (0 < N (x)P ≤ 0.1)) →
(−5◦ ≤ N (x)S ≤ 5◦)

b) Property ϕ1.:

∀x.((x ∈ [0, 1]n) ∧ (0.1 < N (x)P ≤ 0.2)) →
(−10◦ ≤ N (x)S ≤ 10◦)

c) Property ϕ2.:

∀x.((x ∈ [0, 1]n) ∧ (0.2 < N (x)P ≤ 0.3)) →
(−20◦ ≤ N (x)S ≤ 20◦)

4https://github.com/uzh-rpg/rpg public dronet



TABLE II: A count of the results produced by each tool when
running on properties without DFV.

Result
Tool sat unsat unknown timeout error

DeepFool 74 0 26 0 0
BIM 73 0 27 0 0
FGSM 71 0 29 0 0
PGD 85 0 0 15 0
Neurify 59 0 0 40 1
nnenum 61 0 0 0 39
VeriNet 49 0 0 51 0

d) Property ϕ3.:

∀x.((x ∈ [0, 1]n) ∧ (0.3 < N (x)P ≤ 0.4)) →
(−30◦ ≤ N (x)S ≤ 30◦)

e) Property ϕ4.:

∀x.((x ∈ [0, 1]n) ∧ (0.4 < N (x)P ≤ 0.5)) →
(−40◦ ≤ N (x)S ≤ 40◦)

f) Property ϕ5.:

∀x.((x ∈ [0, 1]n) ∧ (0.5 < N (x)P ≤ 0.6)) →
(−50◦ ≤ N (x)S ≤ 50◦)

g) Property ϕ6.:

∀x.((x ∈ [0, 1]n) ∧ (0.6 < N (x)P ≤ 0.7)) →
(−60◦ ≤ N (x)S ≤ 60◦)

h) Property ϕ7.:

∀x.((x ∈ [0, 1]n) ∧ (0.7 < N (x)P ≤ 0.8)) →
(−70◦ ≤ N (x)S ≤ 70◦)

i) Property ϕ8.:

∀x.((x ∈ [0, 1]n) ∧ (0.8 < N (x)P ≤ 0.9)) →
(−80◦ ≤ N (x)S ≤ 80◦)

j) Property ϕ9.:

∀x.((x ∈ [0, 1]n) ∧ (0.9 < N (x)P ≤ 1.0)) →
(−90◦ ≤ N (x)S ≤ 90◦)

In this section we present additional results and data from
the experiments for our first research question. Table ?? shows
the number of results of each type produced by each tool on the
FashionMNIST model alone, without using DFV. Similarly,
Table ?? shows the number of results of each type produced
by each tool on the FashionMNIST when DFV is used with
a simple VAE as the environment model. As expected, DFV
reduces the number of sat results as it restricts tools to report
counter-examples within the distribution.

In this section we report additional plots and data from the
experiments executed to address our second research question.

Fig. ?? shows the mean reconstruction similarity of each
counter-example found by PGD across all of the latent space
sizes, number of layers, and number of neurons per layer
explored. Each latent space size is shown in a different plot,

Fig. 10: MRS of counter-examples found using PGD across all
latent space sizes, number of layers, and number of neurons
per layer. The MRS was computed with the VAEMRS model
using SSIM similarity.



TABLE III: A count of the results produced by each tool when
running on properties with DFV.

Result
Tool sat unsat unknown timeout error

DeepFool 56 0 44 0 0
BIM 53 0 47 0 0
FGSM 48 0 52 0 0
PGD 71 0 0 29 0
Neurify 7 0 0 93 0
nnenum 64 0 25 0 11
VeriNet 2 0 0 98 0

with a latent space of dimension 1 in the top plot and
dimension 32 in the bottom plot.

We also show the same plots but using the encoder stochas-
tic reconstruction error (ESRE) in Fig. ??. This value is
computed as the mean of the mean squared error of 100
reconstructions of each counter-example using VAEMRS .

In addition to the quality measures for each counter-
example, we present the times to find each counter-example
across the 90 VAE configurations explored in RQ2 in Fig. ??.

Finally, Figure ?? presents the times to find each counter-
example across the 16 different radii explored in the second
part of RQ2.

In this section we report addition plots and data from the
experiments run to address our third research question.

Figure ?? presents the encoder stochastic reconstruction
error (ESRE) for each counter-example found. This value is
computed as the mean of the mean squared error of 100 recon-
structions of each counter-example using Conv-VAEDroNet.

We also present all of the counter-examples found for the
DroNet properties, both with (Figures ?? and ??) and without
(Fig. ??) DFV.

Fig. 11: MRS of counter-examples found using PGD across all
latent space sizes, number of layers, and number of neurons
per layer. The error was computed with the VAEMRS model
using the Mean Squared Error (MSE).



Fig. 12: Time spent by PGD to find counter-examples for each
model explored in RQ2.

Fig. 13: Time spent by PGD to find counter-examples using
different radii.

Fig. 14: A plot of the reconstruction error for each counter-
example found. The Mean Squared Error (MSE) is used to
measure reconstruction error, and we take the mean of 100
reconstructions using Conv-VAEDroNet.



Fig. 15: The counter-examples found by PGD for each of the
10 properties of the DroNet DNN without using DFV. Each
row corresponds to one property and each column is a separate
run of PGD on the property and DroNet network.

Fig. 16: The counter-examples found by PGD for each of
the 10 properties of the DroNet DNN using DFV with FC-
VAEDronet. Each row corresponds to one property and each
column is a separate run of PGD on the property and DroNet
network.



Fig. 17: The counter-examples found by PGD for each of
the 10 properties of the DroNet DNN using DFV with
GANDroNet. Each row corresponds to one property and each
column is a separate run of PGD on the property and DroNet
network.


